cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A053339 Squarefree terms of A050530 with 3 prime divisors.

Original entry on oeis.org

255, 435, 455, 561, 595, 665, 705, 795, 805, 885, 957, 1001, 1105, 1295, 1309, 1335, 1463, 1495, 1551, 1605, 1615, 1645, 1729, 1749, 1855, 1885, 1947, 1955, 2001, 2055, 2065, 2091, 2093, 2185, 2235, 2345, 2387, 2405, 2465, 2555, 2703, 2717, 2755, 2821
Offset: 1

Views

Author

Labos Elemer, Jan 05 2000

Keywords

Examples

			435 = 3*5*29 and 435 - Phi(435) = 3*5 + 3*29 + 5*29 - 3 - 5 - 29 + 1 = 211, the 47th prime. [corrected by _Jon E. Schoenfield_, May 30 2018]
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[3000],PrimeQ[#-EulerPhi[#]]&],SquareFreeQ[3] && PrimeOmega[#]==3&] (* Harvey P. Dale, Jun 23 2013 *)
  • PARI
    isok(n) = isprime(n-eulerphi(n)) && issquarefree(n) && (omega(n)==3); \\ Michel Marcus, May 31 2018

Formula

Numbers k = pqr such that A051953(k) = k - EulerPhi(k) is a prime of polynomial form pq + pr + qr - p - q - r + 1.

A053340 Terms of A050530 with four prime divisors.

Original entry on oeis.org

5865, 8645, 10005, 10465, 13685, 15045, 15295, 16269, 18285, 20445, 22015, 24871, 26845, 27965, 28405, 28815, 29733, 30705, 31031, 31255, 33215, 35245, 36105, 37037, 37145, 37365, 37765, 37995, 38985, 39831, 40579, 41041, 43435, 44135
Offset: 1

Views

Author

Labos Elemer, Jan 05 2000

Keywords

Examples

			The 3rd entry is 10005=3*5*23*29, also in A050530 and A051953(10005)=5077 is a prime.
		

Crossrefs

Formula

n=pqrs, having 4 prime divisors, squarefree and n-phi(n) is a prime

A068080 Integers n such that n + phi(n) is a prime.

Original entry on oeis.org

1, 2, 3, 7, 15, 19, 31, 33, 35, 37, 51, 65, 69, 77, 79, 85, 91, 95, 97, 133, 139, 141, 143, 145, 157, 159, 161, 177, 187, 199, 209, 211, 213, 215, 217, 229, 235, 247, 255, 267, 271, 299, 303, 307, 319, 331, 335, 337, 339, 341, 345, 365, 367, 371, 379, 391, 393
Offset: 1

Views

Author

Amarnath Murthy, Feb 17 2002

Keywords

Comments

The subsequence of prime terms is given by A005382. - Michel Marcus, Aug 22 2015

Crossrefs

Cf. A050530.

Programs

  • Magma
    [n: n in [1..400] |IsPrime(n+EulerPhi(n))]; // Vincenzo Librandi, Dec 19 2015
  • Mathematica
    Select[Range[400], PrimeQ[# + EulerPhi[#]] &] (* Carl Najafi, Aug 22 2011 *)
  • PARI
    isok(n) = isprime(n+eulerphi(n)); \\ Michel Marcus, Aug 22 2015
    

Extensions

Edited and extended by Robert G. Wilson v, Feb 18 2002

A121048 a(n) = n + phi(n), where phi is the Euler totient function.

Original entry on oeis.org

2, 3, 5, 6, 9, 8, 13, 12, 15, 14, 21, 16, 25, 20, 23, 24, 33, 24, 37, 28, 33, 32, 45, 32, 45, 38, 45, 40, 57, 38, 61, 48, 53, 50, 59, 48, 73, 56, 63, 56, 81, 54, 85, 64, 69, 68, 93, 64, 91, 70, 83, 76, 105, 72, 95, 80, 93, 86, 117, 76, 121, 92, 99, 96, 113, 86, 133, 100, 113
Offset: 1

Views

Author

Jonathan Vos Post, Aug 08 2006

Keywords

Crossrefs

Programs

  • Magma
    [n + EulerPhi(n): n in [1..70]]; // Vincenzo Librandi, Jul 13 2012
    
  • Mathematica
    Table[n+EulerPhi[n],{n,1,70}]
  • PARI
    a(n) = n+eulerphi(n); \\ Michel Marcus, Sep 19 2022

Formula

a(n) = n + phi(n) = n + A000010(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 + 1/zeta(2) = 1.607927... . - Amiram Eldar, Dec 16 2023

A290089 Filter-sequence for the prime signature of cototient: a(1) = 0; for n > 1, a(n) = A101296(A051953(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 5, 2, 5, 1, 6, 1, 6, 3, 6, 1, 7, 2, 4, 3, 7, 1, 4, 1, 7, 2, 6, 2, 8, 1, 6, 4, 8, 1, 9, 1, 8, 4, 8, 1, 10, 2, 9, 2, 6, 1, 11, 4, 10, 4, 9, 1, 6, 1, 10, 5, 10, 2, 4, 1, 11, 3, 4, 1, 12, 1, 4, 4, 8, 2, 8, 1, 12, 5, 9, 1, 13, 4, 6, 2, 12, 1, 9, 2, 12, 4, 12, 2, 14, 1, 8, 4, 13, 1, 9, 1, 8, 4
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2017

Keywords

Crossrefs

Cf. A000040 (the positions of 1's), A050530 (the positions of 2's).

Formula

a(1) = 0; for n > 1, a(n) = A101296(A051953(n)).

A051961 Smallest number w such that A051953(w) = w - phi(w) is the n-th prime.

Original entry on oeis.org

4, 9, 25, 15, 35, 33, 65, 51, 95, 161, 87, 217, 185, 123, 215, 329, 371, 177, 427, 335, 213, 511, 395, 581, 1501, 485, 303, 515, 321, 545, 255, 635, 917, 411, 1529, 447, 1057, 1099, 455, 1169, 1211, 537, 1991, 573, 965, 591, 435, 2743, 1115, 681, 665
Offset: 1

Views

Author

Labos Elemer, Jan 05 2000

Keywords

Examples

			The 31st term is 255 since 255 - phi(255) = 127, the 31st prime, and no number less than 255 has this property.
		

Crossrefs

Programs

  • Mathematica
    With[{c=Table[n-EulerPhi[n],{n,4000}]},Table[Position[c,p,1,1],{p,Prime[ Range[ 60]]}]]//Flatten (* Harvey P. Dale, Sep 14 2020 *)
  • PARI
    a(n) = {my(k = 1); while(k - eulerphi(k) != prime(n), k++); k;} \\ Michel Marcus, Feb 02 2015

Formula

A050530(a(n)) = prime(n) and a(n) is the least number with this property.
a(n) = A063507(A000040(n)). - Michel Marcus, Feb 02 2015

A053343 Semiprimes of the form pq where p < q and p + q - 1 is prime.

Original entry on oeis.org

15, 33, 35, 51, 65, 77, 87, 91, 95, 119, 123, 143, 161, 177, 185, 209, 213, 215, 217, 221, 247, 259, 287, 303, 321, 329, 335, 341, 371, 377, 395, 403, 407, 411, 427, 437, 447, 469, 473, 485, 511, 515, 527, 533, 537, 545, 551, 573, 581, 591, 611, 629, 635
Offset: 1

Views

Author

Labos Elemer, Jan 05 2000

Keywords

Comments

Squarefree terms of A050530 with 2 prime divisors.
All terms are odd. - Muniru A Asiru, Aug 29 2017

Crossrefs

Subsequence of A291318.

Programs

  • GAP
    A053343:=List(Filtered(Filtered(List(Filtered(List([1..10^5],Factors),i->Length(i)=2),Set),j->Length(j)=2),i->IsPrime(Sum(i)-1)),Product); # Muniru A Asiru, Aug 29 2017
  • Mathematica
    With[{nn=70}, Take[Times@@@Select[Subsets[Prime[Range[nn]], {2}], PrimeQ[Total[#] - 1] &]//Union, nn]] (* Vincenzo Librandi, Aug 23 2017 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=5,lim\3, forprime(q=3,min(lim\p,p-2), if(isprime(p+q-1), listput(v,p*q)))); Set(v) \\ Charles R Greathouse IV, Aug 23 2017
    

Formula

n=pq such that n-phi(n) = pq-(p-1)(q-1) = p+q-1 is prime.

Extensions

New name from Vincenzo Librandi Aug 23 2017

A068081 Numbers n such that n + phi(n) and n - phi(n) are prime.

Original entry on oeis.org

15, 33, 35, 51, 65, 77, 91, 95, 143, 161, 177, 209, 213, 215, 217, 247, 255, 303, 335, 341, 371, 411, 427, 435, 447, 455, 533, 545, 561, 573, 591, 611, 665, 707, 713, 717, 779, 803, 871, 917, 933, 965, 1001, 1041, 1067, 1105, 1115, 1133, 1157, 1159, 1211
Offset: 1

Views

Author

Amarnath Murthy, Feb 17 2002

Keywords

Crossrefs

Programs

  • GAP
    A068081:=[];; for n in [1,3..10^4+1] do if IsPrime(n+Phi(n)) and IsPrime(n-Phi(n)) then Add(A068081,n); fi; od; A068081;  # Muniru A Asiru, Aug 31 2017
  • Maple
    with(numtheory): for n from 1 by 2 to 10^4 do if [isprime(n+phi(n)),
    isprime(n-phi(n))]=[true,true] then print(n); fi; od; # Muniru A Asiru, Aug 31 2017
  • Mathematica
    Select[ Range[1500], PrimeQ[ # + EulerPhi[ # ]] && PrimeQ[ # - EulerPhi[ # ]] & ]
    epQ[n_]:=Module[{ep=EulerPhi[n]},AllTrue[n+{ep,-ep},PrimeQ]]; Select[ Range[ 1500],epQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 22 2016 *)
  • PARI
    is(n)=my(t=eulerphi(n)); isprime(n-t) && isprime(n+t) \\ Charles R Greathouse IV, Jan 25 2017
    

Extensions

Edited and extended by Robert G. Wilson v, Feb 18 2002

A277254 Numbers k such that p = k - phi(k) < q = k - lambda(k), and p and q are both primes, where phi(k) = A000010(k) and lambda(k) = A002322(k).

Original entry on oeis.org

15, 33, 35, 65, 77, 87, 91, 95, 119, 123, 143, 185, 215, 221, 247, 255, 259, 287, 329, 341, 377, 395, 407, 427, 437, 455, 473, 485, 511, 515, 537, 573, 595, 635, 705, 713, 717, 721, 749, 767, 779, 793, 795, 803, 805, 815, 817, 843, 869, 871, 885, 899, 923, 965, 1001
Offset: 1

Views

Author

Thomas Ordowski, Oct 07 2016

Keywords

Comments

Numbers k such that p = A051953(k) < q = A277127(k), and p and q are both primes.
If k is such number, then b^p == b^q (mod k) for every integer b.
Problem: are there infinitely many such numbers?
Suppose p^2 divides k. Then p divides k - phi(k), and so the only way k - phi(k) can be prime is if k = p^2. But then k - phi(k) = k - A002322(k). Hence all terms in this sequence are squarefree. - Charles R Greathouse IV, Oct 08 2016
All terms are odd composites. - Robert Israel, Oct 09 2016
It seems that gpf(k) < p = k - phi(k). - Thomas Ordowski, Oct 09 2016

Examples

			For n=15, A051953(15) = 7, A277127(15) = 11, 7 < 11 and both are primes, thus 15 is included in the sequence.
		

Crossrefs

Subsequence of A033949 and of A024556.

Programs

  • Maple
    filter:= proc(n) uses numtheory;
      local p,q;
      p:= n-phi(n);
      q:= n-lambda(n);
      pRobert Israel, Oct 09 2016
  • Mathematica
    Select[Range[10^3], And[#1 < #2, Times @@ Boole@ PrimeQ@ {#1, #2} == 1] & @@ {# - EulerPhi@ #, # - CarmichaelLambda@ #} &] (* Michael De Vlieger, Oct 08 2016 *)
  • PARI
    is(n)=my(f=factor(n),p=n-eulerphi(f),q=n-lcm(znstar(f)[2])); p < q && isprime(p) && isprime(q) \\ Charles R Greathouse IV, Oct 08 2016

Extensions

More terms from Altug Alkan, Oct 07 2016

A051999 Minimal value w such that A051953(w) = w - phi(w) is prime and w has n prime divisors.

Original entry on oeis.org

4, 15, 255, 5865, 170085, 5437705, 226473065, 10380578845, 494390700895, 43592479037107
Offset: 1

Views

Author

Labos Elemer, Jan 05 2000

Keywords

Comments

a(11) <= 2995513256722805. - Donovan Johnson, Feb 06 2010

Examples

			a(1)=2^2, a(2)=3*5, a(3)=3*5*17, a(4)=3*5*17*23, a(5)=3*5*17*23*29, a(6)=5437705=5*7*13*17*19*37 with 1,2,3,4,5,6 prime divisors, respectively. The generated primes of form w - phi(w) are as follows: 2, 7, 127, 3049, 91237, 2452721.
		

Crossrefs

Extensions

a(7)-a(10) from Donovan Johnson, Feb 06 2010
Showing 1-10 of 10 results.