cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A261004 Expansion of (-3-164*x-x^2)/(1-99*x+99*x^2-x^3).

Original entry on oeis.org

-3, -461, -45343, -4443321, -435400283, -42664784581, -4180713488823, -409667257120241, -40143210484294963, -3933624960203786301, -385455102889486762703, -37770666458209498958761, -3701139857801641411196043, -362673935398102648798253621, -35538344529156257940817658983
Offset: 0

Views

Author

N. J. A. Sloane, Aug 12 2015

Keywords

Comments

Mc Laughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence a_k.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{99,-99,1},{-3,-461,-45343},30] (* Harvey P. Dale, Dec 02 2017 *)
  • PARI
    Vec((-3-164*x-x^2)/(1-99*x+99*x^2-x^3) + O(x^20)) \\ Michel Marcus, Feb 29 2016

A051028 Ramanujan's a-series: expansion of (1+53x+9x^2)/(1-82x-82x^2+x^3).

Original entry on oeis.org

1, 135, 11161, 926271, 76869289, 6379224759, 529398785665, 43933719985479, 3645969360009049, 302571523160765631, 25109790452983538281, 2083810036074472911735, 172931123203728268135681, 14351199415873371782349831, 1190976620394286129666900249
Offset: 0

Views

Author

Keywords

Comments

The "amazing" identity of Ramanujan is a(n)^3 + b(n)^3 = c(n)^3 + (-1)^n, where a(n)=A051028(n), b(n)=A051029(n) and c(n)=A051030(n). - Emeric Deutsch, Oct 14 2006

Crossrefs

Programs

  • Maple
    g:=(1+53*x+9*x^2)/(1-82*x-82*x^2+x^3): gser:=series(g,x=0,20): seq(coeff(gser,x,n),n=0..12); # Emeric Deutsch, Oct 14 2006
  • Mathematica
    CoefficientList[Series[(1 + 53 x + 9 x^2)/(1 - 82 x - 82 x^2 + x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Jul 22 2015 *)
  • PARI
    Vec((1+53*x+9*x^2)/(1-82*x-82*x^2+x^3) + O(x^30)) \\ Michel Marcus, Feb 29 2016

Formula

G.f.: (1+53*x+9*x^2)/((1+x)*(1-83*x+x^2)).
X(n+1) = A*X(n), where X(n) = transpose(A051028(n), A051029(n), A051030(n)) and A = matrix(3,3,[63,104,-68; 64,104,-67; 80,131,-85]). - Emeric Deutsch, Oct 14 2006

Extensions

Minor edits (g.f. and name) by M. F. Hasler, May 08 2016

A051029 Ramanujan's b-series: expansion of (2-26x-12x^2)/(1-82x-82x^2+x^3).

Original entry on oeis.org

2, 138, 11468, 951690, 78978818, 6554290188, 543927106802, 45139395574362, 3746025905565260, 310875010766342202, 25798879867700837522, 2140996154008403172108, 177676881902829762447458, 14745040201780861879966890, 1223660659865908706274804428
Offset: 0

Views

Author

Keywords

Comments

The "amazing" identity of Ramanujan is a(n)^3 + b(n)^3 = c(n)^3 + (-1)^n, where a(n) = A051028(n), b(n) = A051029(n) and c(n) = A051030(n). - Emeric Deutsch, Oct 14 2006

References

  • For additional references and links see A051028.

Crossrefs

Programs

  • Maple
    g:=(2-26*x-12*x^2)/(1-82*x-82*x^2+x^3): gser:=series(g,x=0,20): seq(coeff(gser,x,n),n=0..12); # Emeric Deutsch, Oct 14 2006
  • Mathematica
    CoefficientList[Series[(2 - 26 x - 12 x^2)/(1 - 82 x - 82 x^2 + x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Jul 22 2015 *)
  • PARI
    Vec((2-26*x-12*x^2)/(1-82*x-82*x^2+x^3) + O(x^30)) \\ Michel Marcus, Feb 29 2016

Formula

G.f.: (2-26*x-12*x^2)/((1+x)*(1-83*x+x^2)).
X(n+1) = A*X(n), where X(n) = transpose(A051028(n), A051029(n), A051030(n)) and A = matrix(3,3,[63,104,-68; 64,104,-67; 80,131,-85]). - Emeric Deutsch, Oct 14 2006

Extensions

Minor edits (g.f. and name) by M. F. Hasler, May 08 2016

A272853 Ramanujan's alpha-series.

Original entry on oeis.org

9, 791, 65601, 5444135, 451797561, 37493753471, 3111529740489, 258219474707159, 21429104870953665, 1778357484814447079, 147582242134728153849, 12247547739697622322431
Offset: 0

Views

Author

Robert Munafo, May 08 2016

Keywords

Comments

Ramanujan's notes define this by the same G.f. as A051028 (the a-series) but using Laurent series expansion. These give identities of the form alpha(n)^3 + beta(n)^3 = gamma(n)^3 + (-1)^n, where alpha(n)=A272853(n), beta(n)=A272854(n) and gamma(n)=A272855(n). They are from page 82 of the "lost notebook" of Ramanujan. A051028,A051029,A051030 give his examples (135, 138, 172) and (11161, 11468, 14258) while A272853,A272854,A272855 give the examples (9, 10, 12), (791, 812, 1010), and (65601, 67402, 83802).

Examples

			a(3)=5444135 because 5444135^3 + 5593538^3 = 6954572^3 - 1.
		

References

  • S. Ramanujan, The Lost Notebook and Other Unpublished Papers (1988), p. 341. New Delhi (Narosa publ. house).

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Normal@ Series[(1 + 53*a + 9*a^2)/(1 - 82*a - 82*a^2 + a^3), {a, Infinity, 20}], 1/a] (* Giovanni Resta, May 08 2016 *)

Formula

G.f.: (9+53*x+x^2)/(1-82*x-82*x^2+x^3).
a(-3)=-11161; a(-2)=-135; a(-1)=-1; a(n) = 82*a(n-1)+82*a(n-2)-a(n-3).
A272853(n)^3 + A272854(n)^3 = A272855(n)^3 + (-1)^n.

A272854 Ramanujan's beta-series.

Original entry on oeis.org

10, 812, 67402, 5593538, 464196268, 38522696690, 3196919629018, 265305806511788, 22017185020849402, 1827161050923988562, 151632350041670201260, 12583657892407702716002
Offset: 0

Views

Author

Robert Munafo, May 08 2016

Keywords

Comments

Ramanujan's notes define this by the same G.f. as A051030 (the c-series) but using Laurent series expansion. It is mislabeled as "gamma" in Ramanujan's notes. These give identities of the form alpha(n)^3 + beta(n)^3 = gamma(n)^3 + (-1)^n, where alpha(n)=A272853(n), beta(n)=A272854(n) and gamma(n)=A272855(n). They are from page 82 of the "lost notebook" of Ramanujan. A051028,A051029,A051030 give his examples (135, 138, 172) and (11161, 11468, 14258) while A272853,A272854,A272855 give the examples (9, 10, 12), (791, 812, 1010), and (65601, 67402, 83802).

Examples

			a(3)=5593538 because 5444135^3 + 5593538^3 = 6954572^3 - 1.
		

References

  • S. Ramanujan, The Lost Notebook and Other Unpublished Papers (1988), p. 341. New Delhi (Narosa publ. house).

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[ Normal@Series[-(2 + 8*x - 10*x^2)/(1 - 82*x - 82*x^2 + x^3), {x, Infinity, 20}], 1/x] (* Giovanni Resta, May 08 2016 *)

Formula

G.f.: (10-8*x-2*x^2)/(1-82*x-82*x^2+x^3).
a(-3)=14258; a(-2)=172; a(-1)=2; a(n) = 82*a(n-1)+82*a(n-2)-a(n-3).
A272853(n)^3 + A272854(n)^3 = A272855(n)^3 + (-1)^n.

A272855 Ramanujan's gamma-series.

Original entry on oeis.org

12, 1010, 83802, 6954572, 577145658, 47896135058, 3974802064140, 329860675188578, 27374461238587818, 2271750422127600332, 188527910575352239722, 15645544827332108296610
Offset: 0

Views

Author

Robert Munafo, May 08 2016

Keywords

Comments

Ramanujan's notes define this by the same G.f. as A051029 (the b-series) but using Laurent series expansion. It is mislabeled as "beta" in Ramanujan's notes. These give identities of the form alpha(n)^3 + beta(n)^3 = gamma(n)^3 + (-1)^n, where alpha(n)=A272853(n), beta(n)=A272854(n) and gamma(n)=A272855(n). They are from page 82 of the "lost notebook" of Ramanujan. A051028,A051029,A051030 give his examples (135, 138, 172) and (11161, 11468, 14258) while A272853,A272854,A272855 give the examples (9, 10, 12), (791, 812, 1010), and (65601, 67402, 83802).

Examples

			a(3)=6954572 because 5444135^3 + 5593538^3 = 6954572^3 - 1.
		

References

  • S. Ramanujan, The Lost Notebook and Other Unpublished Papers (1988), p. 341. New Delhi (Narosa publ. house).

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[ Normal@ Series[-1*(2 - 26 a - 12 a^2)/(1 - 82*a - 82*a^2 + a^3), {a, Infinity, 10}], 1/a] (* Giovanni Resta, May 08 2016 *)

Formula

G.f.: x*(12+26*x-2*x^2)/(1-82*x-82*x^2+x^3).
a(-3)=11468; a(-2)=138; a(-1)=2; a(n) = 82*a(n-1)+82*a(n-2)-a(n-3).
A272853(n)^3 + A272854(n)^3 = A272855(n)^3 + (-1)^n.
Showing 1-6 of 6 results.