A261004
Expansion of (-3-164*x-x^2)/(1-99*x+99*x^2-x^3).
Original entry on oeis.org
-3, -461, -45343, -4443321, -435400283, -42664784581, -4180713488823, -409667257120241, -40143210484294963, -3933624960203786301, -385455102889486762703, -37770666458209498958761, -3701139857801641411196043, -362673935398102648798253621, -35538344529156257940817658983
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Kwang-Wu Chen, Extensions of an amazing identity of Ramanujan, Fib. Q., 50 (2012), 227-230.
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Index entries for linear recurrences with constant coefficients, signature (99, -99, 1).
-
LinearRecurrence[{99,-99,1},{-3,-461,-45343},30] (* Harvey P. Dale, Dec 02 2017 *)
-
Vec((-3-164*x-x^2)/(1-99*x+99*x^2-x^3) + O(x^20)) \\ Michel Marcus, Feb 29 2016
A051028
Ramanujan's a-series: expansion of (1+53x+9x^2)/(1-82x-82x^2+x^3).
Original entry on oeis.org
1, 135, 11161, 926271, 76869289, 6379224759, 529398785665, 43933719985479, 3645969360009049, 302571523160765631, 25109790452983538281, 2083810036074472911735, 172931123203728268135681, 14351199415873371782349831, 1190976620394286129666900249
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..468
- Kwang-Wu Chen, Extensions of an amazing identity of Ramanujan, Fib. Q., 50 (2012), 227-230.
- Jung Hun Han and Michael D. Hirschhorn, Another Look at an Amazing Identity of Ramanujan, Mathematics Magazine, Vol. 79 (2006), pp. 302-304.
- Michael D. Hirschhorn, An amazing identity of Ramanujan, Math. Mag. 68 (1995), no. 3, 199--201. MR1335148
- Michael D. Hirschhorn, A Proof in the Spirit of Zeilberger of an Amazing Identity of Ramanujan, Math. Mag., 69.4 (1996), 267-269.
- Michael D. Hirschhorn, Ramanujan and Fermat's Last Theorem, The Australian Mathematical Society, Gazette, Volume 31 Number 4, September 2004.
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Eric Rowland and Jesus Sistos Barron, Complexity of powers of a constant-recursive sequence, arXiv:2501.14643 [math.NT], 2025. See p. 2.
- Eric Weisstein's World of Mathematics, Ramanujan's Sum Identity.
- Index entries for linear recurrences with constant coefficients, signature (82,82,-1).
-
g:=(1+53*x+9*x^2)/(1-82*x-82*x^2+x^3): gser:=series(g,x=0,20): seq(coeff(gser,x,n),n=0..12); # Emeric Deutsch, Oct 14 2006
-
CoefficientList[Series[(1 + 53 x + 9 x^2)/(1 - 82 x - 82 x^2 + x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Jul 22 2015 *)
-
Vec((1+53*x+9*x^2)/(1-82*x-82*x^2+x^3) + O(x^30)) \\ Michel Marcus, Feb 29 2016
A051029
Ramanujan's b-series: expansion of (2-26x-12x^2)/(1-82x-82x^2+x^3).
Original entry on oeis.org
2, 138, 11468, 951690, 78978818, 6554290188, 543927106802, 45139395574362, 3746025905565260, 310875010766342202, 25798879867700837522, 2140996154008403172108, 177676881902829762447458, 14745040201780861879966890, 1223660659865908706274804428
Offset: 0
- For additional references and links see A051028.
- Robert Israel, Table of n, a(n) for n = 0..468
- Kwang-Wu Chen, Extensions of an amazing identity of Ramanujan, Fib. Q., 50 (2012), 227-230.
- Jung Hun Han and Michael D. Hirschhorn, Another Look at an Amazing Identity of Ramanujan, Mathematics Magazine, Vol. 79 (2006), pp. 302-304.
- Michael D. Hirschhorn, An amazing identity of Ramanujan, Math. Mag. 68 (1995), no. 3, 199--201. MR1335148
- Michael D. Hirschhorn, A Proof in the Spirit of Zeilberger of an Amazing Identity of Ramanujan, Math. Mag., 69.4 (1996), 267-269.
- J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
- Eric Rowland and Jesus Sistos Barron, Complexity of powers of a constant-recursive sequence, arXiv:2501.14643 [math.NT], 2025. See p. 2.
- Eric Weisstein's World of Mathematics, Ramanujan's Sum Identity.
- Index entries for linear recurrences with constant coefficients, signature (82,82,-1).
-
g:=(2-26*x-12*x^2)/(1-82*x-82*x^2+x^3): gser:=series(g,x=0,20): seq(coeff(gser,x,n),n=0..12); # Emeric Deutsch, Oct 14 2006
-
CoefficientList[Series[(2 - 26 x - 12 x^2)/(1 - 82 x - 82 x^2 + x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Jul 22 2015 *)
-
Vec((2-26*x-12*x^2)/(1-82*x-82*x^2+x^3) + O(x^30)) \\ Michel Marcus, Feb 29 2016
A272853
Ramanujan's alpha-series.
Original entry on oeis.org
9, 791, 65601, 5444135, 451797561, 37493753471, 3111529740489, 258219474707159, 21429104870953665, 1778357484814447079, 147582242134728153849, 12247547739697622322431
Offset: 0
a(3)=5444135 because 5444135^3 + 5593538^3 = 6954572^3 - 1.
- S. Ramanujan, The Lost Notebook and Other Unpublished Papers (1988), p. 341. New Delhi (Narosa publ. house).
-
Rest@ CoefficientList[Normal@ Series[(1 + 53*a + 9*a^2)/(1 - 82*a - 82*a^2 + a^3), {a, Infinity, 20}], 1/a] (* Giovanni Resta, May 08 2016 *)
A272854
Ramanujan's beta-series.
Original entry on oeis.org
10, 812, 67402, 5593538, 464196268, 38522696690, 3196919629018, 265305806511788, 22017185020849402, 1827161050923988562, 151632350041670201260, 12583657892407702716002
Offset: 0
a(3)=5593538 because 5444135^3 + 5593538^3 = 6954572^3 - 1.
- S. Ramanujan, The Lost Notebook and Other Unpublished Papers (1988), p. 341. New Delhi (Narosa publ. house).
-
Rest@ CoefficientList[ Normal@Series[-(2 + 8*x - 10*x^2)/(1 - 82*x - 82*x^2 + x^3), {x, Infinity, 20}], 1/x] (* Giovanni Resta, May 08 2016 *)
A272855
Ramanujan's gamma-series.
Original entry on oeis.org
12, 1010, 83802, 6954572, 577145658, 47896135058, 3974802064140, 329860675188578, 27374461238587818, 2271750422127600332, 188527910575352239722, 15645544827332108296610
Offset: 0
a(3)=6954572 because 5444135^3 + 5593538^3 = 6954572^3 - 1.
- S. Ramanujan, The Lost Notebook and Other Unpublished Papers (1988), p. 341. New Delhi (Narosa publ. house).
-
Rest@ CoefficientList[ Normal@ Series[-1*(2 - 26 a - 12 a^2)/(1 - 82*a - 82*a^2 + a^3), {a, Infinity, 10}], 1/a] (* Giovanni Resta, May 08 2016 *)
Showing 1-6 of 6 results.
Comments