cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051601 Rows of triangle formed using Pascal's rule except we begin and end the n-th row with n.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 4, 4, 3, 4, 7, 8, 7, 4, 5, 11, 15, 15, 11, 5, 6, 16, 26, 30, 26, 16, 6, 7, 22, 42, 56, 56, 42, 22, 7, 8, 29, 64, 98, 112, 98, 64, 29, 8, 9, 37, 93, 162, 210, 210, 162, 93, 37, 9, 10, 46, 130, 255, 372, 420, 372, 255, 130, 46, 10
Offset: 0

Views

Author

Keywords

Comments

The number of spotlight tilings of an m X n rectangle missing the southeast corner. E.g., there are 2 spotlight tilings of a 2 X 2 square missing its southeast corner. - Bridget Tenner, Nov 10 2007
T(n,k) = A134636(n,k) - A051597(n,k). - Reinhard Zumkeller, Nov 23 2012
For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 18 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013

Examples

			From _Roger L. Bagula_, Feb 17 2009: (Start)
Triangle begins:
   0;
   1,  1;
   2,  2,   2;
   3,  4,   4,   3;
   4,  7,   8,   7,    4;
   5, 11,  15,  15,   11,    5;
   6, 16,  26,  30,   26,   16,   6;
   7, 22,  42,  56,   56,   42,   22,    7;
   8, 29,  64,  98,  112,   98,   64,   29,   8;
   9, 37,  93, 162,  210,  210,  162,   93,   37,   9;
  10, 46, 130, 255,  372,  420,  372,  255,  130,  46,  10;
  11, 56, 176, 385,  627,  792,  792,  627,  385, 176,  56, 11;
  12, 67, 232, 561, 1012, 1419, 1584, 1419, 1012, 561, 232, 67, 12. ... (End)
		

Crossrefs

Row sums give A000918(n+1).
Columns from 2 to 9, respectively: A000124; A000125, A055795, A027660, A055796, A055797, A055798, A055799 (except 1 for the last seven). [Bruno Berselli, Aug 02 2013]
Cf. A001477, A162551 (central terms).

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k->  Binomial(n, k+1) + Binomial(n, n-k+1) ))); # G. C. Greubel, Nov 12 2019
  • Haskell
    a051601 n k = a051601_tabl !! n !! k
    a051601_row n = a051601_tabl !! n
    a051601_tabl = iterate
                   (\row -> zipWith (+) ([1] ++ row) (row ++ [1])) [0]
    -- Reinhard Zumkeller, Nov 23 2012
    
  • Magma
    /* As triangle: */ [[Binomial(n,m+1)+Binomial(n,n-m+1): m in [0..n]]: n in [0..12]]; // Bruno Berselli, Aug 02 2013
    
  • Maple
    seq(seq(binomial(n,k+1) + binomial(n, n-k+1), k=0..n), n=0..12); # G. C. Greubel, Nov 12 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = Binomial[n, k+1] + Binomial[n, n-k+1];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* Roger L. Bagula, Feb 17 2009; modified by G. C. Greubel, Nov 12 2019 *)
  • PARI
    T(n,k) = binomial(n, k+1) + binomial(n, n-k+1);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    [[binomial(n, k+1) + binomial(n, n-k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
    

Formula

T(m,n) = binomial(m+n,m) - 2*binomial(m+n-2,m-1), up to offset and transformation of array to triangular indices. - Bridget Tenner, Nov 10 2007
T(n,k) = binomial(n, k+1) + binomial(n, n-k+1). - Roger L. Bagula, Feb 17 2009
T(0,n) = T(n,0) = n, T(n,k) = T(n-1,k) + T(n-1,k-1), 0 < k < n.