cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051673 Cubic star numbers: a(n) = n^3 + 4*Sum_{i=0..n-1} i^2.

Original entry on oeis.org

0, 1, 12, 47, 120, 245, 436, 707, 1072, 1545, 2140, 2871, 3752, 4797, 6020, 7435, 9056, 10897, 12972, 15295, 17880, 20741, 23892, 27347, 31120, 35225, 39676, 44487, 49672, 55245, 61220, 67611, 74432, 81697, 89420, 97615, 106296, 115477, 125172
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)

Keywords

Comments

Also as a(n) = (1/6)*(14*n^3 - 12*n^2 + 4*n), n>0: structured cubeoctahedral numbers (vertex structure 7); and structured pentagonal anti-diamond numbers (vertex structure 7) (cf. A004466 = alternate vertex) (cf. A100188 = structured anti-diamonds). Cf. A100145 for more on structured polyhedral numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Starting with offset 1 = binomial transform of [1, 11, 24, 14, 0, 0, 0, ...]. - Gary W. Adamson, Aug 05 2009
This is prime for a(3) = 47. The subsequence of semiprimes begins: 707, 7435, 10897, 20741, 115477, 341797, 825091, 897097, no more through a(100). - Jonathan Vos Post, May 27 2010

Examples

			a(51) = 51*(51*(7*51-6)+2)/3 = 304351 = 17 * 17903 is semiprime. - _Jonathan Vos Post_, May 27 2010
		

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

Programs

Formula

a(n) = n*(n*(7*n-6) + 2)/3.
G.f.: x*(1+8*x+5*x^2)/(1-x)^4. - Bruno Berselli, May 12 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=1, a(2)=12, a(3)=47. - Harvey P. Dale, Jul 22 2011
From Reinhard Zumkeller, Jul 25 2012: (Start)
a(n) = A214659(n) - A002378(n).
a(n) = Sum_{k=1..n} A214661(n, k), for n > 0 (row sums). (End)
E.g.f.: (x/3)*(3 + 15*x + 7*x^2)*exp(x). - G. C. Greubel, Mar 10 2024

Extensions

Corrected by T. D. Noe, Nov 01 2006, Nov 08 2006