A051836 a(n) = n*(n+1)*(n+2)*(n+3)*(3*n+2)/120.
0, 1, 8, 33, 98, 238, 504, 966, 1716, 2871, 4576, 7007, 10374, 14924, 20944, 28764, 38760, 51357, 67032, 86317, 109802, 138138, 172040, 212290, 259740, 315315, 380016, 454923, 541198, 640088, 752928, 881144, 1026256, 1189881, 1373736, 1579641, 1809522, 2065414
Offset: 0
Examples
By the fourth comment: A000217(1..6) and A000326(1..6) give the term a(6) = 1*21+5*15+12*10+22*6+35*3+51*1 = 504. - _Bruno Berselli_, Jun 27 2013
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Andrásfai Graph.
- Eric Weisstein's World of Mathematics, Chordless Cycle.
- Eric Weisstein's World of Mathematics, Graph Complement.
- Index to sequences related to pyramidal numbers.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Magma
[0] cat [Binomial(n+4, n)*(3*n+5)/5: n in [0..40]]; // Vincenzo Librandi, Jul 04 2017
-
Maple
with (combinat):a[0]:=0:for n from 1 to 50 do a[n]:=stirling2(n+2,n)+a[n-1] od: seq(a[n], n=0..34); # Zerinvary Lajos, Mar 17 2008
-
Mathematica
Table[n(n + 1)(n + 2)(n + 3)(3n + 2)/120, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2011 *) CoefficientList[Series[x (1 + 2 x) / (1 - x)^6, {x, 0, 33}], x] (* Vincenzo Librandi, Jul 04 2017 *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,8,33,98,238},40] (* Harvey P. Dale, Jun 01 2018 *)
-
PARI
a(n)=n*(n+1)*(n+2)*(n+3)*(3*n+2)/120 \\ Charles R Greathouse IV, Oct 07 2015
-
SageMath
[((3*n+2)/(n+4))*binomial(n+4,5) for n in range(41)] # G. C. Greubel, Dec 27 2023
Formula
a(n) = C(n+4, n)*(3n+5)/5.
G.f.: x*(1+2*x)/(1-x)^6. (adapted by Vincenzo Librandi, Jul 04 2017)
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 135*sqrt(3)*Pi/14 - 1215*log(3)/14 + 925/21.
Sum_{n>=1} (-1)^(n+1)/a(n) = 135*sqrt(3)*Pi/7 - 880*log(2)/7 - 355/21. (End)
E.g.f.: (1/5!)*x*(120 + 360*x + 240*x^2 + 50*x^3 + 3*x^4)*exp(x). - G. C. Greubel, Dec 27 2023
Extensions
Simpler definition from Ben Creech (mathroxmysox(AT)yahoo.com), Nov 13 2005
Comments