cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051836 a(n) = n*(n+1)*(n+2)*(n+3)*(3*n+2)/120.

Original entry on oeis.org

0, 1, 8, 33, 98, 238, 504, 966, 1716, 2871, 4576, 7007, 10374, 14924, 20944, 28764, 38760, 51357, 67032, 86317, 109802, 138138, 172040, 212290, 259740, 315315, 380016, 454923, 541198, 640088, 752928, 881144, 1026256, 1189881, 1373736, 1579641, 1809522, 2065414
Offset: 0

Views

Author

Barry E. Williams, Dec 12 1999

Keywords

Comments

5-dimensional version of pentagonal-based pyramidal numbers. - Ben Creech (mathroxmysox(AT)yahoo.com)
If Y is a 3-subset of an n-set X then, for n>=7, a(n-6) is the number of 7-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
Antidiagonal sums of the convolution array A213548. - Clark Kimberling, Jun 17 2012
After 0, convolution of nonzero triangular numbers (A000217) and nonzero pentagonal numbers (A000326). - Bruno Berselli, Jun 27 2013
a(n) is also the number of odd chordless cycles in the graph complement of the (n+1)-Andrásfai graph. - Eric W. Weisstein, Apr 14 2017

Examples

			By the fourth comment: A000217(1..6) and A000326(1..6) give the term a(6) = 1*21+5*15+12*10+22*6+35*3+51*1 = 504. - _Bruno Berselli_, Jun 27 2013
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.

Crossrefs

Partial sums of A001296.
Cf. A093560 ((3, 1) Pascal, column m=5).

Programs

  • Magma
    [0] cat [Binomial(n+4, n)*(3*n+5)/5: n in [0..40]]; // Vincenzo Librandi, Jul 04 2017
    
  • Maple
    with (combinat):a[0]:=0:for n from 1 to 50 do a[n]:=stirling2(n+2,n)+a[n-1] od: seq(a[n], n=0..34); # Zerinvary Lajos, Mar 17 2008
  • Mathematica
    Table[n(n + 1)(n + 2)(n + 3)(3n + 2)/120, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2011 *)
    CoefficientList[Series[x (1 + 2 x) / (1 - x)^6, {x, 0, 33}], x] (* Vincenzo Librandi, Jul 04 2017 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,8,33,98,238},40] (* Harvey P. Dale, Jun 01 2018 *)
  • PARI
    a(n)=n*(n+1)*(n+2)*(n+3)*(3*n+2)/120 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [((3*n+2)/(n+4))*binomial(n+4,5) for n in range(41)] # G. C. Greubel, Dec 27 2023

Formula

a(n) = C(n+4, n)*(3n+5)/5.
G.f.: x*(1+2*x)/(1-x)^6. (adapted by Vincenzo Librandi, Jul 04 2017)
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 135*sqrt(3)*Pi/14 - 1215*log(3)/14 + 925/21.
Sum_{n>=1} (-1)^(n+1)/a(n) = 135*sqrt(3)*Pi/7 - 880*log(2)/7 - 355/21. (End)
E.g.f.: (1/5!)*x*(120 + 360*x + 240*x^2 + 50*x^3 + 3*x^4)*exp(x). - G. C. Greubel, Dec 27 2023

Extensions

Simpler definition from Ben Creech (mathroxmysox(AT)yahoo.com), Nov 13 2005