cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052544 Expansion of (1-x)^2/(1 - 4*x + 3*x^2 - x^3).

Original entry on oeis.org

1, 2, 6, 19, 60, 189, 595, 1873, 5896, 18560, 58425, 183916, 578949, 1822473, 5736961, 18059374, 56849086, 178955183, 563332848, 1773314929, 5582216355, 17572253481, 55315679788, 174128175064, 548137914373, 1725482812088
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals INVERT transform of (1, 1, 3, 8, 21, 55, 144, ...). - Gary W. Adamson, May 01 2009
The Ze2 sums, see A180662, of triangle A065941 equal the terms (doubled) of this sequence. - Johannes W. Meijer, Aug 16 2011
Equals the partial sums of A052529 starting (1, 1, 4, 13, 41, 129, ...). - Gary W. Adamson, Feb 15 2012
First trisection of Narayana's cows sequence A000930. - Oboifeng Dira, Aug 03 2016
From Peter Bala, Nov 03 2017: (Start)
Let f(x) = x/(1 - x^3), the characteristic function of numbers of the form 3*n + 1. Then f(f(x)) = Sum_{n >= 0} a(n)*x^(3*n+1).
a(n) = the number of compositions of 3*n + 1 into parts of the form 3*m + 1. For example, a(2) = 6 and the six compositions of 7 into parts of the form 3*m + 1 are 7, 4 + 1 + 1 + 1, 1 + 4 + 1 + 1, 1 + 1 + 4 + 1, 1 + 1 + 1 + 4 and 1 + 1 + 1 + 1 + 1 + 1 + 1. Cf. A001519, which gives the number of compositions of an odd number into odd parts. (End)
a(n-1) is the number of permutations of length n avoiding the partially ordered pattern (POP) {1>2, 1>3, 4>2} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the second and third elements, and the fourth element is larger than the second element. - Sergey Kitaev, Dec 09 2020

Examples

			G.f. = 1 + 2*x + 6*x^2 + 19*x^3 + 60*x^4 + 189*x^5 + 595*x^6 + 1873*x^7 + ...
		

Crossrefs

Cf. A124820 (partial sums).

Programs

  • GAP
    a:=[1,2,6];; for n in [4..30] do a[n]:=4*a[n-1]-3*a[n-2]+a[n-3]; od; a; # G. C. Greubel, May 09 2019
  • Magma
    I:=[1, 2, 6]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 12 2012
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Sequence(Z),Sequence(Z))))}, unlabeled]: seq(combstruct[count](spec,size=n), n=0..25);
    A052544 := proc(n): add(binomial(n+2*k, 3*k), k=0...n)  end: seq(A052544(n), n=0..25); # Johannes W. Meijer, Aug 16 2011
  • Mathematica
    LinearRecurrence[{4,-3,1},{1,2,6},30] (* Harvey P. Dale, Jul 13 2011 *)
    Table[Sum[Binomial[n + 2 k, 3 k], {k, 0, n}], {n, 0, 30}] (* or *)
    CoefficientList[Series[(1-x)^2/(1-4x+3x^2-x^3), {x, 0, 30}], x] (* Michael De Vlieger, Aug 03 2016 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(n + 2*k, 3*k))}; /* Michael Somos, Jan 12 2012 */
    
  • PARI
    Vec((1-x)^2/(1-4*x+3*x^2-x^3)+O(x^30)) \\ Charles R Greathouse IV, Jan 12 2012
    
  • Sage
    ((1-x)^2/(1-4*x+3*x^2-x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
    

Formula

G.f.: (1-x)^2/(1 -4*x +3*x^2 -x^3).
a(n) = 4*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = Sum(-1/31*(-4-7*_alpha+2*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(-1+4*_Z-3*_Z^2+_Z^3)).
a(n) = Sum_{k=0..n} binomial(n+2*k, 3*k). - Richard L. Ollerton, May 12 2004
G.f.: 1 / (1 - x - x / (1 - x)^2). - Michael Somos, Jan 12 2012
a(n) = hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], -4/27). - Peter Luschny, Nov 03 2017

Extensions

More terms from James Sellers, Jun 06 2000