cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052749 a(n) = 2*n * Stirling2(n-1,2).

Original entry on oeis.org

0, 0, 0, 6, 24, 70, 180, 434, 1008, 2286, 5100, 11242, 24552, 53222, 114660, 245730, 524256, 1114078, 2359260, 4980698, 10485720, 22020054, 46137300, 96468946, 201326544, 419430350, 872415180, 1811939274, 3758096328, 7784628166, 16106127300, 33285996482
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of ordered set partitions of an n-set into 3 nonempty sets such that the first set contains exactly one element. a(5) = 70 since the ordered set partitions are the following: 20 of type {1},{2,3,4},{5}; 30 of type {1},{2,3},{4,5}; 20 of type {1},{2},{3,4,5}. - Enrique Navarrete, Jun 11 2023

Crossrefs

Programs

  • Magma
    [n le 2 select 0 else n*(2^(n-1)-2): n in [0..40]]; // Vincenzo Librandi, Nov 18 2014
  • Maple
    spec := [S,{B=Set(Z,1 <= card),S=Prod(Z,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    g := taylor(exp(x)^2*x-2*x*exp(x)+x,x=0,121): q := seq(coeff(g,x,i)*i!,i=0..120);
  • Mathematica
    Table[If[n < 3, 0, (n*(2^n - 3) - n)/2], {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Jun 30 2011 *)
    LinearRecurrence[{6,-13,12,-4},{0,0,0,6,24,70},40] (* Harvey P. Dale, Aug 30 2017 *)

Formula

E.g.f.: x*exp(x)^2 - 2*x*exp(x) + x.
Recurrence: {a(1)=0, a(2)=0, a(3)=6, (2*n^2+6*n+4)*a(n)+(-6*n-3*n^2)*a(n+1)+(n^2+n)*a(n+2)}.
a(n) = Sum_{k=3..n} n*2^(k-2). - Zerinvary Lajos, Oct 09 2006
a(n) = n*(2^(n-1)-2) = n*A000918(n-1), n >= 3. - Mitch Harris, Oct 25 2006
O.g.f.: 2*x^3*(3-6*x+2*x^2)/((-1+x)^2*(-1+2*x)^2). - R. J. Mathar, Dec 05 2007
a(n) = Sum_{j=1..n} ( Sum_{i=2..n-1} (j+1)*2^(j-i-1) ). - Wesley Ivan Hurt, Nov 17 2014
a(n) = n*(2^n-4)/2, n > 1. - Wesley Ivan Hurt, Nov 17 2014
a(n) = 2*A260006(n-2). - R. J. Mathar, Apr 26 2017

Extensions

Better description from Victor Adamchik (adamchik(AT)cs.cmu.edu), Jul 19 2001