A052750 a(n) = (2*n + 1)^(n - 1).
1, 1, 5, 49, 729, 14641, 371293, 11390625, 410338673, 16983563041, 794280046581, 41426511213649, 2384185791015625, 150094635296999121, 10260628712958602189, 756943935220796320321, 59938945498865420543457
Offset: 0
Examples
Discriminant: n=4: P(4, x) = 1 + 2*x - 3*x^2 - x^3 + x^4 with the zeros x[1] = -2*cos((2/9)*Pi), x[2] = -2*cos((4/9)*Pi), x[3] = 1, x[4] = 2*cos((1/9)*Pi). D(4) = (Det(Vandermonde(4,[x[1],x[2],x[3],x[4]])))^2 = 729 = a(4). - _Wolfdieter Lang_, Dec 16 2013
References
- L. W. Beineke, and J. W. Moon, Several proofs of the number of labelled 2-dimensional trees, In "Proof Techniques in Graph Theory" (F. Harary editor). Academic Press, New York, 1969, pp. 11-20.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..350
- T. Fowler, I. Gessel, G. Labelle, and P. Leroux, The specification of 2-trees, Adv. Appl. Math. 28 (2) (2002) 145-168, eq. (9).
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 706
- Henri Muehle and Philippe Nadeau, A Poset Structure on the Alternating Group Generated by 3-Cycles, arXiv:1803.00540 [math.CO], 2018.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
GAP
List([0..20],n->(2*n+1)^(n-1)); # Muniru A Asiru, Dec 05 2018
-
Magma
[(2*n+1)^(n-1) : n in [0..20]]; // Wesley Ivan Hurt, Jan 20 2017
-
Maple
spec := [S,{B=Prod(Z,S,S),S=Set(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
max = 16; (Series[Exp[-1/2*ProductLog[-2*x]], {x, 0, max}] // CoefficientList[#, x] & ) * Range[0, max]! (* Jean-François Alcover, Jun 20 2013 *) Table[(2*n+1)^(n-1),{n,0,20}] (* Harvey P. Dale, Jul 14 2025 *)
-
PARI
a(n)=(2*n+1)^(n-1) \\ Charles R Greathouse IV, Nov 20 2011
-
PARI
{a(n)=local(A=1+x);for(i=1,21,A=sqrt(1+2*sum(n=1,21,x^(2*n-1)/(2*n-1)!*A^(4*n-1))+x*O(x^n)));n!*polcoeff(A,n)} \\ Paul D. Hanna, Sep 07 2012
-
Python
for n in range(0, 20): print((2*n + 1)**(n - 1), end=', ') # Stefano Spezia, Dec 01 2018
Formula
E.g.f.: exp(-1/2*W(-2*x)), where W is Lambert's W function.
E.g.f. satisfies: A(x) = sqrt(1 + 2*Sum_{n>=1} x^(2*n-1)/(2*n-1)! * A(x)^(4*n-1)). - Paul D. Hanna, Sep 07 2012
E.g.f. satisfies: A(x) = 1/A(-x*A(x)^4). - Paul D. Hanna, Sep 07 2012
a(n) = discriminant of P(n,x) = S(n,x) - S(n-1,x), n >= 1, with the Chebyshev S polynomials from A049310. For the proof see the comment above. a(n) is also the discriminant of S(n,x) + S(n-1,x) = (-1)^n*(S(n,-x) - S(n-1,-x)). - Wolfdieter Lang, Dec 16 2013
From Peter Bala, Dec 19 2013: (Start)
The e.g.f. A(x) = 1 + x + 5*x^2/2! + 49*x^3/3! + 729*x^4/4! + ... satisfies:
1) A(x*exp(-2*x)) = exp(x) = 1/A(-x*exp(2*x));
2) A^2(x) = 1/x*series reversion(x*exp(-2*x));
3) A(x^2) = 1/x*series reversion(x*exp(-x^2));
4) A(x) = exp(x*A(x)^2). (End)
E.g.f.: sqrt(-LambertW(-2*x)/(2*x)). - Vaclav Kotesovec, Dec 07 2014
Related to A001705 by Sum_{n >= 1} a(n)*x^n/n! = series reversion( 1/(1 + x)^2*log(1 + x) ) = series reversion(x - 5*x^2/2! + 26*x^3/3! - 154*x^4/4! + ...). Cf. A000272, A052752, A052774, A052782. - Peter Bala, Jun 15 2016
From Peter Bala, Dec 13 2022: (Start)
The e.g.f. A(x) = 1/x * series reversion of x^2/T(x), where the tree function T(x) = Sum_{n >= 1} n^(n-1)*x^n/n!. See A000169.
For c in C, A(x)^c = 1 + Sum_{n >= 1} c*(2*n + c)^(n-1)*x^n/n!.
First derivative A'(x) = A(x)^3/(1 - 2*x*A(x)^2).
Series reversion of (1 - A(-z)) = -log(1 - z)/(1 - z)^2 is the e.g.f. of A001705.
1/z * series reversion of z/A(z) = 1 + z + 7*z^2/2! + (10^2)*z^3/3! + (13^3)*z^4/4! + ... is the e.g.f. of A052752.
1/z * series reversion of z/A(z^2) = 1 + z^2 + 9*z^4/2! + (13^2)*z^6/3! + (17^3)*z^8/4! + ... = Sum_{n >= 0} A052774(n)*z^(2*n)/n!.
1/z * series reversion of z/A(z^3) = 1 + z^3 + 11*z^6/2! + (16^2)*z^9/3! + (21^3)*z^12/4! + ... = Sum_{n >= 0} A052782(n)*z^(3*n)/n!.
1/z * series reversion of z/A(z)^2 = A(2*z) = 2*Sum_{n >= 0} (4*n + 2)^(n-1)*z^n/n!.
1/z * series reversion of z/A(z)^k = k*Sum_{n >= 0} ((k+2)*n + k)^(n-1)*z^n/n!. (End)
a(n) = Sum_{k=1..n} (-1)^(n-k)*(n+k)^(n-1)*binomial(n,k-1), a(0)=1. - Vladimir Kruchinin, Aug 14 2025
Extensions
Better description from Vladeta Jovovic, Sep 02 2003
Comments