A053200 Binomial coefficients C(n,k) reduced modulo n, read by rows; T(0,0)=0 by convention.
0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 3, 2, 3, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 0, 0, 3, 0, 0, 3, 0, 0, 1, 1, 0, 5, 0, 0, 2, 0, 0, 5, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 6, 4, 3, 0, 0, 0, 3, 4, 6, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Row 4 = 1 mod 4, 4 mod 4, 6 mod 4, 4 mod 4, 1 mod 4 = 1, 0, 2, 0, 1. Triangle begins: 0; 0,0; 1,0,1; 1,0,0,1; 1,0,2,0,1; 1,0,0,0,0,1; 1,0,3,2,3,0,1; 1,0,0,0,0,0,0,1; 1,0,4,0,6,0,4,0,1; 1,0,0,3,0,0,3,0,0,1; 1,0,5,0,0,2,0,0,5,0,1; 1,0,0,0,0,0,0,0,0,0,0,1; 1,0,6,4,3,0,0,0,3,4,6,0,1; 1,0,0,0,0,0,0,0,0,0,0,0,0,1;
Links
- T. D. Noe, Rows n = 0..100 of triangle, flattened
- M. Agrawal, N. Kayal & N. Saxena, PRIMES is in P, Annals of Maths., 160:2 (2004), pp. 781-793. [alternate link]
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Haskell
a053200 n k = a053200_tabl !! n !! k a053200_row n = a053200_tabl !! n a053200_tabl = [0] : zipWith (map . flip mod) [1..] (tail a007318_tabl) -- Reinhard Zumkeller, Jul 10 2015, Jan 01 2013
-
Maple
f := n -> seriestolist( series( expand( (1+x)^n ) mod n, x, n+1)); # N. J. A. Sloane
-
Mathematica
Flatten[Join[{0},Table[Mod[Binomial[n,Range[0,n]],n],{n,20}]]] (* Harvey P. Dale, Apr 29 2013 *)
-
PARI
T(n,k)=if(n, binomial(n,k)%n, 0) \\ Charles R Greathouse IV, Feb 07 2017
Extensions
Corrected by T. D. Noe, Feb 08 2008
Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar
Comments