cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053602 a(n) = a(n-1) - (-1)^n*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 5, 3, 8, 5, 13, 8, 21, 13, 34, 21, 55, 34, 89, 55, 144, 89, 233, 144, 377, 233, 610, 377, 987, 610, 1597, 987, 2584, 1597, 4181, 2584, 6765, 4181, 10946, 6765, 17711, 10946, 28657, 17711, 46368, 28657, 75025, 46368, 121393, 75025
Offset: 0

Views

Author

Michael Somos, Jan 17 2000

Keywords

Comments

If b(0)=0, b(1)=1 and b(n) = b(n-1) + (-1)^n*b(n-2), then a(n) = b(n+3). - Jaume Oliver Lafont, Oct 03 2009
a(n) is the number of palindromic compositions of n-1 into parts of 1 and 2. a(7) = 5 because we have 2+2+2, 2+1+1+2, 1+2+2+1, 1+1+2+1+1, 1+1+1+1+1+1. - Geoffrey Critzer, Mar 17 2014
a(n) is the number of palindromic compositions of n into odd parts (the corresponding generating function follows easily from Theorem 1.2 of the Hoggatt et al. reference). Example: a(7) = 5 because we have 7, 1+5+1, 3+1+3, 1+1+3+1+1, 1+1+1+1+1+1+1. - Emeric Deutsch, Aug 16 2016
The ratio of a(n)/a(n-1) oscillates between phi-1 and phi+1 as n tends to infinity, where phi is golden ratio (A001622). - Waldemar Puszkarz, Oct 10 2017

Crossrefs

Programs

  • Magma
    I:=[0,1,1,2]; [n le 4 select I[n] else Self(n-2)+Self(n-4): n in [1..50]]; // Vincenzo Librandi Oct 10 2017
    
  • Maple
    a[0] := 0: a[1] := 1: for n from 2 to 60 do a[n] := a[n-1]-(-1)^n*a[n-2] end do: seq(a[n], n = 0 .. 50); # Emeric Deutsch, Oct 09 2017
  • Mathematica
    nn=50;CoefficientList[Series[x (1+x+x^2)/(1-x^2-x^4),{x,0,nn}],x] (* Geoffrey Critzer, Mar 17 2014 *)
    LinearRecurrence[{0,1,0,1},{0,1,1,2},60] (* Harvey P. Dale, Nov 07 2016 *)
    RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]-(-1)^n a[n-2]}, a, {n, 50}] (* Vincenzo Librandi, Oct 10 2017 *)
  • PARI
    a(n)=fibonacci(n\2+n%2*2)
    
  • SageMath
    [fibonacci(n//2 + 2*(n%2)) for n in range(61)] # G. C. Greubel, Dec 06 2022

Formula

G.f.: x*(1 + x + x^2)/(1 - x^2 - x^4).
a(n) = a(n-2) + a(n-4).
a(2n) = F(n), a(2n-1) = F(n+1) where F() is Fibonacci sequence.
a(3-n) = A051792(n).
a(3)=1, a(4)=2, a(n+2) = a(n+1) + sign(a(n) - a(n+1))*a(n), n > 4. - Benoit Cloitre, Apr 08 2002
a(n) = A079977(n-1) + A079977(n-2) + A079977(n-3), n > 2. - Ralf Stephan, Apr 26 2003
a(0) = 0, a(1) = 1; a(2n) = a(2n-1) - a(2n-2); a(2n+1) = a(2n) + a(2n-1). - Amarnath Murthy, Jul 21 2005