A053602 a(n) = a(n-1) - (-1)^n*a(n-2), a(0)=0, a(1)=1.
0, 1, 1, 2, 1, 3, 2, 5, 3, 8, 5, 13, 8, 21, 13, 34, 21, 55, 34, 89, 55, 144, 89, 233, 144, 377, 233, 610, 377, 987, 610, 1597, 987, 2584, 1597, 4181, 2584, 6765, 4181, 10946, 6765, 17711, 10946, 28657, 17711, 46368, 28657, 75025, 46368, 121393, 75025
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Krithnaswami Alladi and V. E. Hoggatt, Jr. Compositions with Ones and Twos, Fibonacci Quarterly, 13 (1975), 233-239. - _Ron Knott_, Oct 29 2010
- A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar, et al., Orbits of Fibonacci and Lucas cubes, dihedral transformations, and asymmetric strings, 2014.
- V. E. Hoggatt, Jr., and Marjorie Bicknell, Palindromic compositions, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.
- M. A. Nyblom, Counting Palindromic Binary Strings Without r-Runs of Ones, J. Int. Seq. 16 (2013) #13.8.7, P_2(n)
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1)
Programs
-
Magma
I:=[0,1,1,2]; [n le 4 select I[n] else Self(n-2)+Self(n-4): n in [1..50]]; // Vincenzo Librandi Oct 10 2017
-
Maple
a[0] := 0: a[1] := 1: for n from 2 to 60 do a[n] := a[n-1]-(-1)^n*a[n-2] end do: seq(a[n], n = 0 .. 50); # Emeric Deutsch, Oct 09 2017
-
Mathematica
nn=50;CoefficientList[Series[x (1+x+x^2)/(1-x^2-x^4),{x,0,nn}],x] (* Geoffrey Critzer, Mar 17 2014 *) LinearRecurrence[{0,1,0,1},{0,1,1,2},60] (* Harvey P. Dale, Nov 07 2016 *) RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]-(-1)^n a[n-2]}, a, {n, 50}] (* Vincenzo Librandi, Oct 10 2017 *)
-
PARI
a(n)=fibonacci(n\2+n%2*2)
-
SageMath
[fibonacci(n//2 + 2*(n%2)) for n in range(61)] # G. C. Greubel, Dec 06 2022
Formula
G.f.: x*(1 + x + x^2)/(1 - x^2 - x^4).
a(n) = a(n-2) + a(n-4).
a(2n) = F(n), a(2n-1) = F(n+1) where F() is Fibonacci sequence.
a(3-n) = A051792(n).
a(3)=1, a(4)=2, a(n+2) = a(n+1) + sign(a(n) - a(n+1))*a(n), n > 4. - Benoit Cloitre, Apr 08 2002
a(0) = 0, a(1) = 1; a(2n) = a(2n-1) - a(2n-2); a(2n+1) = a(2n) + a(2n-1). - Amarnath Murthy, Jul 21 2005
Comments