cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A008443 Number of ordered ways of writing n as the sum of 3 triangular numbers.

Original entry on oeis.org

1, 3, 3, 4, 6, 3, 6, 9, 3, 7, 9, 6, 9, 9, 6, 6, 15, 9, 7, 12, 3, 15, 15, 6, 12, 12, 9, 12, 15, 6, 13, 21, 12, 6, 15, 9, 12, 24, 9, 18, 12, 9, 18, 15, 12, 13, 24, 9, 15, 24, 6, 18, 27, 6, 12, 15, 18, 24, 21, 15, 12, 27, 9, 13, 18, 15, 27, 27, 9, 12, 27, 15, 24, 21, 12, 15, 30, 15, 12
Offset: 0

Views

Author

Keywords

Comments

Fermat asserted that every number is the sum of three triangular numbers. This was proved by Gauss, who recorded in his Tagebuch entry for Jul 10 1796 that: EYPHEKA! num = DELTA + DELTA + DELTA. See also Gauss, DA, art. 293.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Andrews (2016), Theorem 2, shows that A008443(n) = A290735(n) + A290737(n) + A290739(n). = N. J. A. Sloane, Aug 10 2017

Examples

			5 can be written as 3+1+1, 1+3+1, 1+1+3, so a(5) = 3.
G.f. = 1 + 3*x + 3*x^2 + 4*x^3 + 6*x^4 + 3*x^5 + 6*x^6 + 9*x^7 + 3*x^8 + ...
G.f. = q^3 + 3*q^11 + 3*q^19 + 4*q^27 + 6*q^35 + 3*q^43 + 6*q^51 + 9*q^59 + 3*q^67 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
  • C. F. Gauss, Disquisitiones Arithmeticae, Yale University Press, 1966, New Haven and London, p. 342, art. 293.
  • M. Nathanson, Additive Number Theory: The Classical Bases, Graduate Texts in Mathematics, Volume 165, Springer-Verlag, 1996. See Chapter 1.

Crossrefs

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440,A226252, A007331, A226253, A226254, A226255, A014787, A014809.
Partial sums are in A038835.

Programs

  • Magma
    Basis( ModularForms( Gamma0(16), 3/2), 630)[4]; /* Michael Somos, Aug 26 2015 */
  • Maple
    s1 := sum(q^(n*(n+1)/2), n=0..30): s2 := series(s1^3, q, 250): for i from 0 to 200 do printf(`%d,`,coeff(s2, q, i)) od:
  • Mathematica
    s1 = Sum[q^(n (n + 1)/2), {n, 0, 12}]; s2 = Series[s1^3, {q, 0, 80}]; CoefficientList[s2, q] (* Jean-François Alcover, Oct 04 2011, after Maple *)
    a[ n_] := SeriesCoefficient[ (1/8) EllipticTheta[ 2, 0, q]^3, {q, 0, 2 n + 3/4}]; (* Michael Somos, May 29 2012 *)
    QP = QPochhammer; CoefficientList[(QP[q^2]^2/QP[q])^3 + O[q]^80, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(8*n + 1) - 1)\2, x^((k^2 + k)/2), x * O(x^n))^3, n))}; /* Michael Somos, Oct 25 2006 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A))^3, n))}; /* Michael Somos, Oct 25 2006 */
    

Formula

Expansion of Jacobi theta constant theta_2^3 /8. G.f. is cube of g.f. for A010054.
Expansion of psi(q)^3 in powers of q where psi() is a Ramanujan theta function (A010054). - Michael Somos, Oct 25 2006
Expansion of q^(-3/8) * (eta(q^2)^2 / eta(q))^3 in powers of q. - Michael Somos, May 29 2012
Euler transform of period 2 sequence [ 3, -3, ...]. - Michael Somos, Oct 25 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2^(-3/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A213384. - Michael Somos, Jun 23 2012
a(3*n) = A213627(n). a(3*n + 1) = 3 * A213617(n). a(3*n + 2) = A181648(n). - Michael Somos, Jun 23 2012
G.f.: (Sum_{k>0} x^((k^2 - k)/2))^3 = (Product_{k>0} (1 + x^k) * (1 - x^(2*k)))^3. - Michael Somos, May 29 2012
a(n) = A005869(n)/2 = A005886(n)/4 = A005878(n)/8.
a(n) = A005875(8*n+3)/8. See, e.g., the Ono et al. link: The case k=3. - Wolfdieter Lang, Jan 12 2017
a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017

Extensions

More terms from James Sellers, Feb 07 2001

A002636 Number of ways of writing n as an unordered sum of at most 3 nonzero triangular numbers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 3, 2, 1, 2, 3, 2, 2, 2, 1, 4, 3, 2, 2, 2, 2, 3, 3, 1, 4, 4, 2, 2, 3, 2, 3, 4, 2, 3, 3, 2, 4, 3, 2, 4, 4, 2, 4, 4, 1, 4, 5, 1, 2, 3, 4, 6, 4, 3, 2, 5, 2, 3, 3, 3, 6, 5, 2, 2, 5, 3, 5, 4, 2, 4, 5, 3, 4, 5, 2, 4, 6, 2, 6, 3, 3, 6, 3, 2, 3, 7, 3, 6, 6, 2, 4, 6, 3, 2
Offset: 0

Views

Author

N. J. A. Sloane, Sep 18 2001

Keywords

Comments

Fermat asserted that every number is the sum of three triangular numbers. This was proved by Gauss, who recorded in his Tagebuch entry for Jul 10 1796 that: EYPHKA! num = DELTA + DELTA + DELTA.
a(n) <= A167618(n). - Reinhard Zumkeller, Nov 07 2009
Equivalently, number of ways of writing n as an unordered sum of exactly 3 triangular numbers. - Jon E. Schoenfield, Mar 28 2021

Examples

			0 : empty sum
1 : 1
2 : 1+1
3 : 3 = 1+1+1
4 : 3+1
5 : 3+1+1
6 : 6 = 3+3
7 : 6+1 = 3+3+1
...
13 : 10 + 3 = 6 + 6 + 1, so a(13) = 2.
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102, eq. (8).
  • D. H. Lehmer, Review of Loria article, Math. Comp. 2 (1947), 301-302.
  • G. Loria, Sulla scomposizione di un intero nella somma di numeri poligonali. (Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 1, (1946). 7-15.
  • Mel Nathanson, Additive Number Theory: The Classical Bases, Graduate Texts in Mathematics, Volume 165, Springer-Verlag, 1996. See Chapter 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    # reuses code in A000217
    A002636 := proc(n)
        local a,i,Ti, j,Tj, Tk ;
        a := 0 ;
        for i from 0 do
            Ti := A000217(i) ;
            if Ti > n then
                break ;
            end if;
            for j from i do
                Tj := A000217(j) ;
                if Ti+Tj > n then
                    break ;
                end if;
                Tk := n-Ti-Tj ;
                if Tk >= Tj and isA000217(Tk) then
                    a := a+1 ;
                end if;
                if Tk < Tj then
                    break ;
                end if;
            end do:
        end do:
        a ;
    end proc:
    seq(A002636(n),n=0..40) ; # R. J. Mathar, May 26 2025
  • Mathematica
    a = Table[ n(n + 1)/2, {n, 0, 15} ]; b = {0}; c = Table[ 0, {100} ]; Do[ b = Append[ b, a[ [ i ] ] + a[ [ j ] ] + a[ [ k ] ] ], {k, 1, 15}, {j, 1, k}, {i, 1, j} ]; b = Delete[ b, 1 ]; b = Sort[ b ]; l = Length[ b ]; Do[ If[ b[ [ n ] ] < 100, c[ [ b[ [ n ] ] + 1 ] ]++ ], {n, 1, l} ]; c
  • PARI
    first(n)=my(v=vector(n+1),A,B,C); for(a=0,n, A=a*(a+1)/2; if(A>n, break); for(b=0,a, B=A+b*(b+1)/2; if(B>n, break); for(c=0,b, C=B+c*(c+1)/2; if(C>n, break); v[C+1]++))); v \\ Charles R Greathouse IV, Jun 23 2017

Extensions

More terms from Robert G. Wilson v, Sep 20 2001
Entry revised by N. J. A. Sloane, Feb 25 2007

A053603 Number of ways to write n as an ordered sum of two nonzero triangular numbers.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 1, 2, 0, 2, 0, 2, 1, 2, 0, 0, 4, 0, 2, 0, 1, 2, 2, 0, 2, 2, 0, 2, 0, 2, 1, 4, 0, 0, 2, 0, 2, 2, 2, 2, 0, 0, 3, 2, 0, 0, 4, 0, 2, 2, 0, 4, 0, 0, 0, 2, 3, 2, 2, 0, 2, 2, 0, 0, 2, 2, 2, 2, 0, 2, 2, 0, 3, 2, 0, 0, 4, 0, 0, 2, 0, 6, 0, 2, 2, 0, 0, 2, 2, 0, 1, 2, 2
Offset: 0

Views

Author

N. J. A. Sloane, Jan 20 2000

Keywords

Comments

a(A051611(n)) = 0; A051533(a(n)) > 0. - Reinhard Zumkeller, Jun 27 2013

Crossrefs

Programs

  • Haskell
    a053603 n = sum $ map (a010054 . (n -)) $
                      takeWhile (< n) $ tail a000217_list
    -- Reinhard Zumkeller, Jun 27 2013
    
  • Mathematica
    nmax = 100; m0 = 10; A053603 := Table[a[n], {n, 0, nmax}]; Clear[counts]; counts[m_] := counts[m] = (Clear[a]; a[A053603);%20counts%5Bm%20=%20m0%5D;%20counts%5Bm%20=%202*m%5D;%20While%5B%20counts%5Bm%5D%20!=%20counts%5Bm/2%5D,%20m%20=%202*m%5D;%20A053603%20(*%20_Jean-Fran%C3%A7ois%20Alcover">] = 0; Do[k = i*(i+1)/2 + j*(j+1)/2; a[k] = a[k]+1, {i, 1, m}, {j, 1, m}]; A053603); counts[m = m0]; counts[m = 2*m]; While[ counts[m] != counts[m/2], m = 2*m]; A053603 (* _Jean-François Alcover, Sep 05 2013 *)
  • PARI
    istriang(n)={n>0 && issquare(8*n+1);}
    a(n) = { my(t=1, ct=0, j=1); while (tJoerg Arndt, Sep 05 2013

Formula

G.f.: ( Sum_{k>=1} x^(k*(k+1)/2) )^2. - Ilya Gutkovskiy, Dec 24 2016
a(n) = Sum_{k=1..n-1} c(k) * c(n-k), where c(n) = A010054(n). - Wesley Ivan Hurt, Jan 06 2024

A230121 Number of ways to write n = x + y + z (0 < x <= y <= z) such that x*(x+1)/2 + y*(y+1)/2 + z*(z+1)/2 is a triangular number.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 2, 1, 1, 0, 2, 1, 2, 1, 2, 3, 2, 2, 6, 1, 3, 5, 1, 2, 3, 5, 2, 1, 3, 3, 3, 4, 3, 8, 2, 5, 11, 2, 5, 8, 4, 6, 4, 9, 4, 6, 5, 4, 6, 3, 8, 8, 5, 8, 10, 7, 7, 11, 8, 6, 7, 8, 5, 9, 7, 6, 8, 7, 7, 8, 13, 9, 11, 10, 7, 22, 9, 10, 13, 3, 6, 10, 8, 17, 12, 7, 9, 10, 16, 6, 18, 18, 10, 15, 9, 12, 20, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 10 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 except for n = 1, 2, 4, 5, 7, 12. Moreover, for each n = 20, 21, ... there are three distinct positive integers x, y and z with x + y + z = n such that x*(x+1)/2 + y*(y+1)/2 + z*(z+1)/2 is a triangular number.
(ii) A positive integer n cannot be written as x + y + z (x, y, z > 0) with x^2 + y^2 + z^2 a square if and only if n has the form 2^r*3^s or the form 2^r*7, where r and s are nonnegative integers.
(iii) Any integer n > 14 can be written as a + b + c + d, where a, b, c, d are positive integers with a^2 + b^2 + c^2 + d^2 a square. If n > 20 is not among 22, 28, 30, 38, 44, 60, then we may require additionally that a, b, c, d are pairwise distinct.
(iv) For each integer n > 50 not equal to 71, there are positive integers a, b, c, d with a + b + c + d = n such that both a^2 + b^2 and c^2 + d^2 are squares.
Part (ii) and the first assertion in part (iii) were confirmed by Chao Huang and Zhi-Wei Sun in 2021. - Zhi-Wei Sun, May 09 2021

Examples

			a(16) = 1 since 16 = 3 + 6 + 7 and 3*4/2 + 6*7/2 + 7*8/2 = 55 = 10*11/2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    T[n_]:=n(n+1)/2
    a[n_]:=Sum[If[SQ[8(T[i]+T[j]+T[n-i-j])+1],1,0],{i,1,n/3},{j,i,(n-i)/2}]
    Table[a[n],{n,1,100}]
  • PARI
    a(n)=my(t=(n+1)*n/2,s);sum(x=1,n\3,s=t-n--*x;sum(y=x,n\2,is_A000217(s-(n-y)*y))) \\ - M. F. Hasler, Oct 11 2013

A307598 Number of partitions of n into 3 distinct positive triangular numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 1, 1, 0, 3, 0, 2, 1, 1, 1, 1, 2, 1, 2, 1, 0, 3, 1, 0, 4, 1, 2, 1, 1, 1, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 1, 3, 2, 2, 2, 2, 1, 3, 2, 0, 4, 1, 1, 5, 1, 3, 2, 2, 3, 2, 2, 1, 4, 1, 2, 4, 2, 2, 3, 2, 1, 3, 2, 4, 3, 3, 2, 2, 3, 1, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2019

Keywords

Comments

The greedy inverse starts 0, 10, 19, 37, 52, 82, 109, 136, 241, 226, 217, 247, 364, 427, 457, 541, 532, 577, 637, 961, 721, 787, 1066, 1102, 1381, 1267, 1564, 1192, 1396, 1816, 1501, 1612, 1927, 1942, 2242, 1792, 2842, 2587, 2557, 2422, ... - R. J. Mathar, Apr 28 2020

Examples

			a(19) = 2 because we have [15, 3, 1] and [10, 6, 3].
		

Crossrefs

Formula

a(n) = [x^n y^3] Product_{k>=1} (1 + y*x^(k*(k+1)/2)).

A063993 Number of ways of writing n as an unordered sum of exactly 3 nonzero triangular numbers.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 2, 0, 2, 2, 2, 1, 1, 2, 2, 2, 0, 3, 2, 2, 2, 2, 2, 1, 3, 1, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 3, 1, 2, 5, 1, 2, 1, 2, 5, 3, 3, 1, 4, 2, 3, 2, 2, 4, 4, 2, 1, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4, 2, 1, 6, 1, 5, 3, 3, 5, 2, 2, 2, 5, 2, 5, 4, 2, 4, 5, 3, 1
Offset: 0

Views

Author

N. J. A. Sloane, Sep 18 2001

Keywords

Comments

a(A002097(n)) = 0; a(A111638(n)) = 1; a(A064825(n)) = 2. - Reinhard Zumkeller, Jul 20 2012

Examples

			5 = 3 + 1 + 1, so a(5) = 1.
		

Crossrefs

Cf. A053604, A008443, A002636, A064181 (greedy inverse), A307598 (3 distinct positive).
Column k=3 of A319797.

Programs

  • Haskell
    a063993 n = length [() | let ts = takeWhile (< n) $ tail a000217_list,
                        x <- ts, y <- takeWhile (<= x) ts,
                        let z = n - x - y, 0 < z, z <= y, a010054 z == 1]
    -- Reinhard Zumkeller, Jul 20 2012
    
  • Maple
    A063993 := proc(n)
        local a,t1idx,t2idx,t1,t2,t3;
        a := 0 ;
        for t1idx from 1 do
            t1 := A000217(t1idx) ;
            if 3*t1 > n then
                break;
            end if;
            for t2idx from t1idx do
                t2 := A000217(t2idx) ;
                if t1+t2 > n then
                    break;
                end if;
                t3 :=  n-t1-t2 ;
                if t3 >= t2 then
                    if isA000217(t3) then
                        a := a+1 ;
                    end if;
                end if ;
            end do:
        end do:
        a ;
    end proc: # R. J. Mathar, Apr 28 2020
  • Mathematica
    a = Table[ n(n + 1)/2, {n, 1, 15} ]; b = {0}; c = Table[ 0, {100} ]; Do[ b = Append[ b, a[ [ i ] ] + a[ [ j ] ] + a[ [ k ] ] ], {k, 1, 15}, {j, 1, k}, {i, 1, j} ]; b = Delete[ b, 1 ]; b = Sort[ b ]; l = Length[ b ]; Do[ If[ b[ [ n ] ] < 100, c[ [ b[ [ n ] ] + 1 ] ]++ ], {n, 1, l} ]; c
  • PARI
    trmx(n)=my(k=sqrtint(8*n+1)\2);if(k^2+k>2*n,k-1,k)
    trmn(n)=trmx(ceil(n)-1)+1
    a(n)=if(n<3, return(0)); sum(a=trmn(n/3),trmx(n-2),my(t=n-a*(a+1)/2);sum(b=trmn(t/2),min(trmx(t-1),a), ispolygonal(t-b*(b+1)/2,3))) \\ Charles R Greathouse IV, Jul 07 2022

Extensions

More terms from Robert G. Wilson v, Sep 20 2001

A340949 Number of ways to write n as an ordered sum of 4 nonzero triangular numbers.

Original entry on oeis.org

1, 0, 4, 0, 6, 4, 4, 12, 1, 16, 6, 16, 12, 12, 22, 8, 36, 4, 30, 24, 21, 36, 18, 36, 28, 48, 16, 44, 36, 44, 48, 36, 46, 40, 72, 20, 73, 48, 54, 72, 42, 68, 56, 84, 50, 72, 78, 56, 84, 84, 62, 112, 60, 60, 110, 84, 97, 72, 120, 76, 116, 84, 72, 144, 102, 104, 96, 108, 102, 156, 102, 92
Offset: 4

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; local r, t, d; r, t, d:= $0..2;
          if n=0 then `if`(k=0, 1, 0) else
          while t<=n do r:= r+b(n-t, k-1); t, d:= t+d, d+1 od; r fi
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..75);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 75; CoefficientList[Series[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^4, {x, 0, nmax}], x] // Drop[#, 4] &

Formula

G.f.: (theta_2(sqrt(x)) / (2 * x^(1/8)) - 1)^4, where theta_2() is the Jacobi theta function.

A340950 Number of ways to write n as an ordered sum of 5 nonzero triangular numbers.

Original entry on oeis.org

1, 0, 5, 0, 10, 5, 10, 20, 5, 35, 11, 40, 30, 35, 55, 30, 90, 25, 100, 60, 80, 120, 60, 140, 90, 161, 100, 165, 135, 165, 210, 140, 220, 180, 265, 170, 295, 200, 285, 330, 205, 365, 260, 395, 295, 391, 350, 355, 480, 340, 455, 490, 415, 480, 515, 445, 600, 510, 565, 550, 680, 545, 555
Offset: 5

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; local r, t, d; r, t, d:= $0..2;
          if n=0 then `if`(k=0, 1, 0) else
          while t<=n do r:= r+b(n-t, k-1); t, d:= t+d, d+1 od; r fi
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=5..67);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 67; CoefficientList[Series[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^5, {x, 0, nmax}], x] // Drop[#, 5] &

Formula

G.f.: (theta_2(sqrt(x)) / (2 * x^(1/8)) - 1)^5, where theta_2() is the Jacobi theta function.

A340951 Number of ways to write n as an ordered sum of 6 nonzero triangular numbers.

Original entry on oeis.org

1, 0, 6, 0, 15, 6, 20, 30, 15, 66, 21, 90, 61, 90, 126, 86, 210, 90, 270, 156, 261, 320, 210, 450, 261, 516, 375, 542, 495, 570, 727, 540, 870, 650, 966, 816, 1050, 906, 1155, 1266, 1020, 1560, 1090, 1710, 1416, 1698, 1635, 1746, 2120, 1650, 2376, 1980, 2316, 2490, 2368, 2520, 2835
Offset: 6

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; local r, t, d; r, t, d:= $0..2;
          if n=0 then `if`(k=0, 1, 0) else
          while t<=n do r:= r+b(n-t, k-1); t, d:= t+d, d+1 od; r fi
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=6..62);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 62; CoefficientList[Series[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^6, {x, 0, nmax}], x] // Drop[#, 6] &

Formula

G.f.: (theta_2(sqrt(x)) / (2 * x^(1/8)) - 1)^6, where theta_2() is the Jacobi theta function.

A340952 Number of ways to write n as an ordered sum of 7 nonzero triangular numbers.

Original entry on oeis.org

1, 0, 7, 0, 21, 7, 35, 42, 35, 112, 42, 182, 112, 210, 260, 217, 462, 252, 651, 399, 728, 777, 672, 1232, 749, 1533, 1127, 1659, 1617, 1792, 2289, 1890, 2926, 2212, 3339, 2990, 3584, 3654, 4046, 4613, 4263, 5754, 4487, 6636, 5733, 6825, 7014, 7203, 8617, 7560, 10087, 8302
Offset: 7

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; local r, t, d; r, t, d:= $0..2;
          if n=0 then `if`(k=0, 1, 0) else
          while t<=n do r:= r+b(n-t, k-1); t, d:= t+d, d+1 od; r fi
        end:
    a:= n-> b(n, 7):
    seq(a(n), n=7..58);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 58; CoefficientList[Series[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^7, {x, 0, nmax}], x] // Drop[#, 7] &

Formula

G.f.: (theta_2(sqrt(x)) / (2 * x^(1/8)) - 1)^7, where theta_2() is the Jacobi theta function.
Showing 1-10 of 15 results. Next