A053606 a(n) = (Fibonacci(6*n+3) - 2)/4.
0, 8, 152, 2736, 49104, 881144, 15811496, 283725792, 5091252768, 91358824040, 1639367579960, 29417257615248, 527871269494512, 9472265593285976, 169972909409653064, 3050040103780469184, 54730748958638792256, 982103441151717791432
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..790
- F. Ellermann, Illustration of binomial transforms
- Index entries for linear recurrences with constant coefficients, signature (19,-19,1).
Crossrefs
Programs
-
GAP
List([0..30], n-> (Fibonacci(6*n+3)-2)/4); # G. C. Greubel, May 16 2019
-
Magma
[(Fibonacci(6*n+3)-2)/4: n in [0..30]]; // Vincenzo Librandi, Apr 20 2011
-
Maple
A053606 := proc(n) add(combinat[fibonacci](6*k),k=0..n) ;end proc: seq(A053606(n),n=0..30) ;
-
Mathematica
Table[(Fibonacci[6n+3] -2)/4, {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
-
PARI
a(n)=fibonacci(6*n+3)\4 \\ Charles R Greathouse IV, Jul 02 2013
-
Sage
[(fibonacci(6*n+3)-2)/4 for n in (0..30)] # G. C. Greubel, May 16 2019
Formula
a(n) = 8*A049664(n).
a(n+1) = 9*a(n) + 2*sqrt(5*(2*a(n)+1)^2-1) + 4. - Richard Choulet, Aug 30 2007
G.f.: 8*x/((1-x)*(1-18*x+x^2)). - Richard Choulet, Oct 09 2007
a(n) = 18*a(n-1) - a(n-2) + 8, n > 1. - Gary Detlefs, Dec 07 2010
a(n) = Sum_{k=0..n} A134492(k). - Gary Detlefs, Dec 07 2010
a(n) = (Fibonacci(6*n+6) - Fibonacci(6*n) - 8)/16. - Gary Detlefs, Dec 08 2010
Comments