cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A080101 Number of prime powers in all composite numbers between n-th prime and next prime.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 28 2003

Keywords

Comments

The maximum value of terms in the sequence, through the (10^5)th term, is 2. - Harvey P. Dale, Aug 24 2014
This is conjectured to be the maximum, see also A366833. - Gus Wiseman, Nov 06 2024

Examples

			There are two prime powers between 2179 = A000040(327) and 2203 = A000040(328): 2187 = 3^7 and 2197 = 13^3, therefore a(327) = 2, A080102(327) = 2187 and A080103(327) = 2197.
		

Crossrefs

For powers of 2 instead of primes we have A244508, see also A013597, A014210, A014234, A304521.
Adding one gives A366833.
For non-prime-powers instead of prime-powers we have A368748.
Positions of positive terms are A377057, primes A053607.
Positions of 0 are A377286.
Positions of 1 are A377287.
Positions of 2 are A377288, primes A053706.
For perfect-powers (instead of prime-powers) we have A377432.
A000015 gives the least prime-power >= n, difference A377282.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820, seconds A376596.
A031218 gives the greatest prime-power <= n, difference A276781.
A046933(n) counts the interval from A008864(n) to A006093(n+1).
A065514 gives the greatest prime-power < prime(n), difference A377289.
A246655 lists the prime-powers not including 1, complement A361102.
A345531 gives the least prime-power > prime(n), difference A377281.

Programs

  • Maple
    a := proc(n) local c, k, p: c, p := 0, ithprime(n): for k from p+1 to nextprime(p)-1 do if nops(numtheory:-factorset(k)) = 1 then c := c+1: fi: od: c: end:
    seq(a(n), n = 1 .. 105); # Lorenzo Sauras Altuzarra, Jul 08 2022
  • Mathematica
    prpwQ[n_]:=Module[{fi=FactorInteger[n]},Length[fi]==1&&fi[[1,2]]>1]; nn=600;With[{pwrs=Table[If[prpwQ[n],1,0],{n,nn}]},Table[Total[ Take[ pwrs,{Prime[n],Prime[n+1]}]],{n,PrimePi[nn]-1}]] (* Harvey P. Dale, Aug 24 2014 *)
    Table[Length[Select[Range[Prime[n]+1,Prime[n+1]-1],PrimePowerQ]],{n,30}] (* Gus Wiseman, Nov 06 2024 *)

Formula

a(n) = A366833(n) - 1. - Gus Wiseman, Nov 06 2024

A366833 Number of times n appears in A362965 (number of primes <= the n-th prime power).

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Paolo Xausa, Oct 25 2023

Keywords

Comments

Conjecture: a(n) can be only 1, 2, or 3 (with the first occurrences of 3 appearing at n = 4, 9, 30, 327 and 3512).
One less than the number of prime powers between prime(n) and prime(n+1), inclusive. - Gus Wiseman, Jan 09 2025

Crossrefs

Run lengths of A362965.
Subtracting one gives A080101.
For non prime powers we have A368748.
Positions of terms > 1 are A377057.
Positions of 1 are A377286.
Positions of 2 are A377287.
For perfect powers we have A377432.
For squarefree we have A373198.
A000015 gives the least prime power >= n, difference A377282.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
A031218 gives the greatest prime power <= n, difference A276781.
A046933(n) counts the interval from A008864(n) to A006093(n+1).
A246655 lists the prime powers not including 1.
A366835 counts primes between prime powers.

Programs

  • Mathematica
    With[{upto=1000},Map[Length,Most[Split[PrimePi[Select[Range[upto],PrimePowerQ]]]]]] (* Considers prime powers up to 1000 *)

Formula

a(n) = A080101(n) + 1. - Gus Wiseman, Jan 09 2025

A377432 Number of perfect-powers x in the range prime(n) < x < prime(n+1).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			Between prime(4) = 7 and prime(5) = 11 we have perfect-powers 8 and 9, so a(4) = 2.
		

Crossrefs

For prime-powers instead of perfect-powers we have A080101.
Non-perfect-powers in the same range are counted by A377433.
Positions of 1 are A377434.
Positions of 0 are A377436.
Positions of terms > 1 are A377466.
For powers of 2 instead of primes we have A377467, for prime-powers A244508.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289.
A007916 lists the non-perfect-powers, differences A375706.
A046933 counts the interval from A008864(n) to A006093(n+1).
A081676 gives the greatest perfect-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053706, A053607, A304521, A377286.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[Length[Select[Range[Prime[n]+1, Prime[n+1]-1],perpowQ]],{n,100}]

Formula

a(n) + A377433(n) = A046933(n) = prime(n+1) - prime(n) - 1.

A377436 Numbers k such that there is no perfect-power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			Primes 8 and 9 are 19 and 23, and the interval (20,21,22) contains no prime-powers, so 8 is in the sequence.
		

Crossrefs

For powers of 2 instead of primes see A377467, A013597, A014210, A014234, A244508.
For squarefree instead of perfect-power we have A068360, see A061398, A377430, A377431.
For just squares (instead of all perfect-powers) we have A221056, primes A224363.
For prime-powers (instead of perfect-powers) we have A377286.
These are the positions of 0 in A377432.
For one instead of none we have A377434, for prime-powers A377287.
For two instead of none we have A377466, for prime-powers A377288, primes A053706.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A046933 counts the interval from A008864(n) to A006093(n+1).
A065514 gives the nearest prime-power before prime(n)-1, difference A377289.
A080101 and A366833 count prime-powers between primes, see A377057, A053607, A304521.
A081676 gives the nearest perfect-power up to n.
A246655 lists the prime-powers not including 1, complement A361102.
A377468 gives the nearest perfect-power after n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Length[Select[Range[Prime[#]+1, Prime[#+1]-1],perpowQ]]==0&]

A377287 Numbers k such that there is exactly one prime-power between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

2, 6, 11, 15, 18, 22, 31, 39, 53, 54, 61, 68, 72, 97, 99, 114, 129, 146, 162, 172, 217, 219, 263, 283, 309, 329, 357, 409, 445, 487, 519, 564, 609, 656, 675, 705, 811, 847, 882, 886, 1000, 1028, 1163, 1252, 1294, 1381, 1423, 1457, 1523, 1715, 1821, 1877, 1900
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Examples

			Primes 18 and 19 are 61 and 67, and the interval (62, 63, 64, 65, 66) contains only the one prime-power 64, so 18 is in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933(n) elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
These are the positions of 1 in A080101, or 2 in A366833.
For at least one prime-power we have A377057, primes A053607.
For no prime-powers we have A377286.
For two prime-powers we have A377288, primes A053706.
For squarefree instead of prime-power see A377430, A061398, A377431, A068360.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100],Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==1&]
  • Python
    from itertools import count, islice
    from sympy import factorint, nextprime
    def A377287_gen(): # generator of terms
        p, q, k = 2, 3, 1
        for k in count(1):
            if sum(1 for i in range(p+1,q) if len(factorint(i))<=1)==1:
                yield k
            p, q = q, nextprime(q)
    A377287_list = list(islice(A377287_gen(),53)) # Chai Wah Wu, Oct 28 2024

A377057 Numbers k such that there is at least one prime-power between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

2, 4, 6, 9, 11, 15, 18, 22, 30, 31, 39, 53, 54, 61, 68, 72, 97, 99, 114, 129, 146, 162, 172, 217, 219, 263, 283, 309, 327, 329, 357, 409, 445, 487, 519, 564, 609, 656, 675, 705, 811, 847, 882, 886, 1000, 1028, 1163, 1252, 1294, 1381, 1423, 1457
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Examples

			Primes 18 and 19 are 61 and 67, and the interval (62, 63, 64, 65, 66) contains the prime-power 64, so 18 is in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933(n) elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The corresponding primes are A053607.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
These are the positions of positive terms in A080101, or terms >1 in A366833.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
For no prime-powers we have A377286.
For exactly one prime-power we have A377287.
For exactly two prime-powers we have A377288, primes A053706.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]>=1&]
  • Python
    from itertools import count, islice
    from sympy import factorint, nextprime
    def A377057_gen(): # generator of terms
        p, q, k = 2, 3, 1
        for k in count(1):
            if any(len(factorint(i))<=1 for i in range(p+1,q)):
                yield k
            p, q = q, nextprime(q)
    A377057_list = list(islice(A377057_gen(),52)) # Chai Wah Wu, Oct 27 2024

Formula

prime(a(n)) = A053607(n).

A377466 Numbers k such that there is more than one perfect power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

4, 9, 11, 30, 327, 445, 3512, 7789, 9361, 26519413
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect powers (A001597) are numbers with a proper integer root, the complement of A007916.
Is this sequence finite?
The Redmond-Sun conjecture (see A308658) implies that this sequence is finite. - Pontus von Brömssen, Nov 05 2024

Examples

			Primes 9 and 10 are 23 and 29, and the interval (24,25,26,27,28) contains two perfect powers (25,27), so 9 is in the sequence.
		

Crossrefs

For powers of 2 see A013597, A014210, A014234, A188951, A244508, A377467.
For no prime-powers we have A377286, ones in A080101.
For a unique prime-power we have A377287.
For squarefree numbers see A377430, A061398, A377431, A068360, A224363.
These are the positions of terms > 1 in A377432.
For a unique perfect power we have A377434.
For no perfect powers we have A377436.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A046933 counts the interval from A008864(n) to A006093(n+1).
A081676 gives the greatest perfect power <= n.
A131605 lists perfect powers that are not prime-powers.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053607, A304521.
A377468 gives the least perfect power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Count[Range[Prime[#]+1, Prime[#+1]-1],_?perpowQ]>1&]
  • Python
    from itertools import islice
    from sympy import prime
    from gmpy2 import is_power, next_prime
    def A377466_gen(startvalue=1): # generator of terms >= startvalue
        k = max(startvalue,1)
        p = prime(k)
        while (q:=next_prime(p)):
            c = 0
            for i in range(p+1,q):
                if is_power(i):
                    c += 1
                    if c>1:
                        yield k
                        break
            k += 1
            p = q
    A377466_list = list(islice(A377466_gen(),9)) # Chai Wah Wu, Nov 04 2024

Formula

a(n) = A000720(A116086(n)) = A000720(A116455(n)) for n <= 10. This would hold for all n if there do not exist more than two perfect powers between any two consecutive primes, which is implied by the Redmond-Sun conjecture. - Pontus von Brömssen, Nov 05 2024

Extensions

a(10) from Pontus von Brömssen, Nov 04 2024

A377288 Numbers k such that there are exactly two prime-powers between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

4, 9, 30, 327, 3512
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Comments

Is this sequence finite? For this conjecture see A053706, A080101, A366833.
Any further terms are > 10^12. - Lucas A. Brown, Nov 08 2024

Examples

			Primes 9 and 10 are 23 and 29, and the interval (24, 25, 26, 27, 28) contains the prime-powers 25 and 27, so 9 is in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933 elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The corresponding primes are A053706.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
These are the positions of 2 in A080101, or 3 in A366833.
For at least one prime-power we have A377057, primes A053607.
For no prime-powers we have A377286.
For exactly one prime-power we have A377287.
For squarefree instead of prime-power see A377430, A061398, A377431, A068360.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==2&]

Formula

prime(a(n)) = A053706(n).

A378456 Number of composite numbers between consecutive nonprime prime powers (exclusive).

Original entry on oeis.org

1, 0, 4, 5, 1, 2, 12, 11, 12, 31, 3, 1, 32, 59, 11, 25, 46, 13, 125, 14, 80, 88, 94, 103, 52, 261, 35, 267, 147, 172, 120, 9, 9, 163, 355, 279, 313, 207, 329, 347, 376, 108, 257, 805, 283, 262, 25, 917, 242, 1081, 702, 365, 752, 389, 251, 535, 1679, 877, 447
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2024

Keywords

Comments

The inclusive version is a(n) + 2.
Nonprime prime powers (A246547) begin: 4, 8, 9, 16, 25, 27, 32, 49, ...

Examples

			The initial terms count the following composite numbers:
  {6}, {}, {10,12,14,15}, {18,20,21,22,24}, {26}, {28,30}, ...
The composite numbers for a(77) = 6 together with their prime indices are the following. We have also shown the nonprime prime powers before and after:
  32761: {42,42}
  32762: {1,1900}
  32763: {2,19,38}
  32764: {1,1,1028}
  32765: {3,847}
  32766: {1,2,14,31}
  32767: {4,11,36}
  32768: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

For prime instead of composite we have A067871.
For nonsquarefree numbers we have A378373, for primes A236575.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A002808 lists the composite numbers.
A031218 gives the greatest prime-power <= n.
A046933 counts composite numbers between primes.
A053707 gives first differences of nonprime prime powers.
A080101 = A366833 - 1 counts prime powers between primes.
A246655 lists the prime-powers not including 1, complement A361102.
A345531 gives the nearest prime power after prime(n) + 1, difference A377281.
Cf. A377286, A377287, A377288 (primes A053706).

Programs

  • Mathematica
    nn=1000;
    v=Select[Range[nn],PrimePowerQ[#]&&!PrimeQ[#]&];
    Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]

A377433 Number of non-perfect-powers x in the range prime(n) < x < prime(n+1).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 3, 3, 1, 3, 3, 1, 3, 4, 5, 1, 4, 3, 1, 5, 2, 5, 7, 2, 1, 3, 1, 3, 11, 2, 5, 1, 8, 1, 5, 5, 3, 4, 5, 1, 9, 1, 2, 1, 11, 10, 2, 1, 3, 5, 1, 8, 4, 5, 5, 1, 5, 3, 1, 8, 13, 3, 1, 3, 12, 5, 8, 1, 3, 5, 6, 5, 5, 3, 5, 7, 2, 7, 9, 1, 9, 1, 5, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers without a proper integer root.
Positions of terms > 1 appear to be A049579.

Examples

			Between prime(4) = 7 and prime(5) = 11 the only non-perfect-power is 10, so a(4) = 1.
		

Crossrefs

Positions of 1 are latter terms of A029707.
Positions of terms > 1 appear to be A049579.
For prime-powers instead of non-perfect-powers we have A080101.
For non-prime-powers instead of non-perfect-powers we have A368748.
Perfect-powers in the same range are counted by A377432.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706.
A065514 gives the greatest prime-power < prime(n), difference A377289.
A081676 gives the greatest perfect-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053706, A053607, A304521, A377286.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Table[Length[Select[Range[Prime[n]+1, Prime[n+1]-1],radQ]],{n,100}]

Formula

a(n) + A377432(n) = A046933(n) = prime(n+1) - prime(n) - 1.
Showing 1-10 of 15 results. Next