A054000 a(n) = 2*n^2 - 2.
0, 6, 16, 30, 48, 70, 96, 126, 160, 198, 240, 286, 336, 390, 448, 510, 576, 646, 720, 798, 880, 966, 1056, 1150, 1248, 1350, 1456, 1566, 1680, 1798, 1920, 2046, 2176, 2310, 2448, 2590, 2736, 2886, 3040, 3198, 3360, 3526, 3696, 3870, 4048, 4230, 4416
Offset: 1
Examples
For n=5, a(5)=48 and 37^2 + 48^2 + 59^2 + 70^2 + 81^2 = 59^2 + 60^2 + 61^2 + 62^2 + 63^2. - _Carmine Suriano_, Oct 16 2013
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Maple
[ seq(2*n^2 - 2, n=1..60) ];
-
Mathematica
2 Range[50]^2 - 2 (* or *) LinearRecurrence[{3, -3, 1}, {0, 6, 16}, 50] (* Harvey P. Dale, Feb 03 2012 *) CoefficientList[Series[2 x (3 - x) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 01 2015 *)
-
PARI
a(n)=2*n^2-2 \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = 4*n + a(n-1) - 2, with n>1, a(1)=0. - Vincenzo Librandi, Aug 06 2010
a(1)=0, a(2)=6, a(3)=16; for n>3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 03 2012
a(n) = (n+i)^2 + (n-i)^2, where i=sqrt(-1). - Bruno Berselli, Jan 23 2014
G.f.: 2*x^2*(3 - x)/(1 - x)^3. - Vincenzo Librandi, Apr 01 2015
E.g.f.: 2*(x^2 + x -1)*exp(x) + 2. - G. C. Greubel, Jul 13 2017
a(n) + a(n+2) = A005843(n+1)^2. - Ezhilarasu Velayutham, May 30 2019
From Amiram Eldar, Dec 09 2021: (Start)
Sum_{n>=2} 1/a(n) = 3/8.
Sum_{n>=2} (-1)^n/a(n) = 1/8. (End)
Comments