A100083
Numbers n such that n divides Sum_{m=1..n} (m+1)!.
Original entry on oeis.org
1, 2, 4, 8, 31, 62, 124, 248, 373, 746, 1492, 2984, 11563, 23126, 46252, 92504
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 08 2004
The first few partial sums of (m+1)!, starting with m=1 are 2, 8, 32, 152, 872, 5912, 46232, 409112. Of these, 2 is divisible by 1; 8 is divisible by 2; 152 is divisible by 4; but 32 is not divisible by 3. Therefore the first few terms of this sequence are 1, 2, 4.
- R. Gerbicz (and others), Re: A100083, SeqFan list, Jun 11 2013
-
s = -1; Do[s = s + n!; If[ Mod[s, n] == 0, Print[n]], {n, 50000}] (* Robert G. Wilson v, Nov 15 2004 *)
Take[Flatten[Select[MapIndexed[List,Accumulate[Range[2,24000]!]], Divisible[#[[1]],#[[2,1]]]&]],{2,-1,2}] (* Harvey P. Dale, Jun 11 2013 *)
-
s=0:for(n=1,5000,s=s+(n+1)!: if(s%n==0,print(n)))
-
is(n)=my(t=Mod(1,n));sum(m=2,n+1,t*=m)==0 \\ Charles R Greathouse IV, Jun 11 2013
-
from itertools import count, islice
def A100083_gen(startvalue=1): # generator of terms >= startvalue
for n in count(max(startvalue,1)):
a, c = 0, 1
for m in range(2,n):
c = c*m%n
if c==0:
break
a = (a+c)%n
if not a:
yield n
A100083_list = list(islice(A100083_gen(),20)) # Chai Wah Wu, Apr 16 2024
A267123
Integers n such that n+2!, n+2!+3!, n+2!+3!+4!, n+2!+3!+4!+5!, n+2!+3!+4!+5!+6!, and n+2!+3!+4!+5!+6!+7! are all prime.
Original entry on oeis.org
11, 15, 99, 231, 351, 455, 725, 3525, 4935, 5405, 5709, 7575, 7641, 12545, 12891, 13749, 16065, 19859, 20475, 23969, 27791, 28049, 28571, 42459, 54615, 58755, 61979, 64481, 71835, 81011, 86261, 88649
Offset: 1
99+2!=101 (is prime)
99+2!+3!=107 (is prime)
99+2!+3!+4!=131 (is prime)
99+2!+3!+4!+5!=251 (is prime)
99+2!+3!+4!+5!+6!=971 (is prime)
99+2!+3!+4!+5!+6!+7!=6011 (is prime)
-
r = {2, 8, 32, 152, 872, 5912}; fQ[n_] := Union[ PrimeQ[n + r]] == {True}; Select[ Range@ 100000, fQ] (* Robert G. Wilson v, Jan 10 2016 *)
-
is(n)=for(k=2,7,if(!isprime(n+=k!), return(0))); 1 \\ Charles R Greathouse IV, Feb 23 2016
-
list(lim)=my(v=List(),p=2,q=3,g,n); forprime(r=5,lim+8, g=q-p; if(g>6 || (g<6 && r-p>6), p=q;q=r; next); n=p+6; for(k=4,7, if(!isprime(n+=k!), p=q;q=r;next(2))); listput(v,p-2);p=q;q=r); Vec(v) \\ Charles R Greathouse IV, Feb 23 2016
A267125
Numbers n such that n+2!, n+2!+3!, n+2!+3!+4!, n+2!+3!+4!+5!, n+2!+3!+4!+5!+6!, n+2!+3!+4!+5!+6!+7!, n+2!+3!+4!+5!+6!+7!+8!, n+2!+3!+4!+5!+6!+7!+8!+9!, and n+2!+3!+4!+5!+6!+7!+8!+9!+10! are all prime.
Original entry on oeis.org
3525, 58755, 2171625, 3711201, 4612811, 4657289, 6714495, 7075271, 7687071, 9330381, 10523045, 11904249, 14060501, 16634171, 17191839, 22909971, 32351711, 35723709, 43992879, 45377325, 49031165, 56682171, 60219615, 64348635, 83743601, 86669615, 94265805
Offset: 1
3525+2!=3527 (is prime)
3525+2!+3!=3533 (is prime)
3525+2!+3!+4!=3557 (is prime)
3525+2!+3!+4!+5!=3677 (is prime)
3525+2!+3!+4!+5!+6!=4397 (is prime)
3525+2!+3!+4!+5!+6!+7!=9437 (is prime)
3525+2!+3!+4!+5!+6!+7!+8!=49757 (is prime)
3525+2!+3!+4!+5!+6!+7!+8!+9!=412637 (is prime)
3525+2!+3!+4!+5!+6!+7!+8!+9!+10!=4041437 (is prime)
-
r = Accumulate@ Array[#! &, 9, 2]; fQ[n_] := Union[ PrimeQ[n + r]] == {True}; k = 1; lst = {}; While[k < 10^8, If[ fQ@ k, AppendTo[lst, k]]; k += 2]; lst (* Robert G. Wilson v, Jan 10 2016 *)
-
is(n)=for(k=2,10,if(!isprime(n+=k!), return(0))); 1 \\ Charles R Greathouse IV, Feb 23 2016
-
list(lim)=my(v=List(),p=2,q=3,g,n); forprime(r=5,lim+8, g=q-p; if(g>6 || (g<6 && r-p>6), p=q;q=r; next); n=p+6; for(k=4,10, if(!isprime(n+=k!), p=q;q=r;next(2))); listput(v,p-2);p=q;q=r); Vec(v) \\ Charles R Greathouse IV, Feb 23 2016
A345889
Number of tilings of an n-cell circular array with rectangular tiles of any size, and where the number of possible colors of a tile is given by the smallest cell covered.
Original entry on oeis.org
1, 4, 16, 76, 436, 2956, 23116, 204556, 2018956, 21977356, 261478156, 3374988556, 46964134156, 700801318156, 11162196262156, 189005910310156, 3390192763174156, 64212742967590156, 1280663747055910156, 26826134832910630156, 588826498721714470156
Offset: 1
Showing 1-4 of 4 results.
Comments