cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A075195 Jablonski table T(n,k) read by antidiagonals: T(n,k) = number of necklaces with n beads of k colors.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 11, 6, 1, 6, 15, 24, 24, 8, 1, 7, 21, 45, 70, 51, 14, 1, 8, 28, 76, 165, 208, 130, 20, 1, 9, 36, 119, 336, 629, 700, 315, 36, 1, 10, 45, 176, 616, 1560, 2635, 2344, 834, 60, 1, 11, 55, 249, 1044, 3367, 7826, 11165, 8230, 2195, 108, 1
Offset: 1

Views

Author

Christian G. Bower, Sep 07 2002

Keywords

Comments

From Richard L. Ollerton, May 07 2021: (Start)
Here, as in A000031, turning over is not allowed.
(1/n) * Dirichlet convolution of phi(n) and k^n. (End)

Examples

			The array T(n,k) for n >= 1, k >= 1 begins:
  1,  2,   3,    4,     5,     6,      7, ...
  1,  3,   6,   10,    15,    21,     28, ...
  1,  4,  11,   24,    45,    76,    119, ...
  1,  6,  24,   70,   165,   336,    616, ...
  1,  8,  51,  208,   629,  1560,   3367, ...
  1, 14, 130,  700,  2635,  7826,  19684, ...
  1, 20, 315, 2344, 11165, 39996, 117655, ...
From _Indranil Ghosh_, Mar 25 2017: (Start)
Triangle formed when the array is read by antidiagonals:
   1;
   2,  1;
   3,  3,   1;
   4,  6,   4,   1;
   5, 10,  11,   6,    1;
   6, 15,  24,  24,    8,    1;
   7, 21,  45,  70,   51,   14,    1;
   8, 28,  76, 165,  208,  130,   20,   1;
   9, 36, 119, 336,  629,  700,  315,  36,  1;
  10, 45, 176, 616, 1560, 2635, 2344, 834, 60, 1;
  ... (End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 86 (2.2.23).
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 496.
  • Louis Comtet, Analyse combinatoire, Tome 2, p. 104 #17, P.U.F., 1970.

Crossrefs

Main Diagonal: A056665. A054630 and A054631 are the upper and lower triangles.

Programs

  • Mathematica
    t[n_, k_] := (1/n)*Sum[EulerPhi[d]*k^(n/d), {d, Divisors[n]}]; Table[t[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 20 2014, after Philippe Deléham *)
  • PARI
    T(n, k) = (1/n) * sumdiv(n, d, eulerphi(d)*k^(n/d));
    for(n=1, 15, for(k=1, n, print1(T(k, n - k + 1),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    from sympy.ntheory import totient, divisors
    def T(n,k): return sum(totient(d)*k**(n//d) for d in divisors(n))//n
    for n in range(1, 16):
        print([T(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 25 2017

Formula

T(n,k) = (1/n)*Sum_{d | n} phi(d)*k^(n/d), where phi = Euler totient function A000010. - Philippe Deléham, Oct 08 2003
From Petros Hadjicostas, Feb 08 2021: (Start)
O.g.f. for column k >= 1: Sum_{n>=1} T(n,k)*x^n = -Sum_{j >= 1} (phi(j)/j) * log(1 - k*x^j).
Linear recurrence for row n >= 1: T(n,k) = Sum_{j=0..n} -binomial(j-n-1,j+1) * T(n,k-1-j) for k >= n + 2. (This recurrence is essentially due to Robert A. Russell, who contributed it in A321791.) (End)
From Richard L. Ollerton, May 07 2021: (Start)
T(n,k) = (1/n)*Sum_{i=1..n} k^gcd(n,i).
T(n,k) = (1/n)*Sum_{i=1..n} k^(n/gcd(n,i))*phi(gcd(n,i))/phi(n/gcd(n,i)).
T(n,k) = (1/n)*A185651(n,k) for n >= 1, k >= 1. (End)
Product_{n>=1} 1/(1 - x^n)^T(n,k) = Product_{n>=1} 1/(1 - k*x^n). - Seiichi Manyama, Apr 12 2025

Extensions

Additional references from Philippe Deléham, Oct 08 2003

A056294 Number of n-bead necklace structures using a maximum of six different colored beads.

Original entry on oeis.org

1, 2, 3, 7, 12, 43, 126, 539, 2304, 11023, 54682, 284071, 1509852, 8195029, 45080666, 250641895, 1404374248, 7917211349, 44848645458, 255055231763, 1455247360128, 8326191290585, 47752990403134
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.
The second Mathematica program uses Gilbert and Riordan's recurrence formula, which they recommend for calculations. - Robert A. Russell, Feb 24 2018

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Programs

  • Mathematica
    Adn[d_, n_] := Module[{ c, t1, t2}, t2 = 0; For[c = 1, c <= d, c++, If[Mod[d, c] == 0 , t2 = t2 + (x^c/c)*(E^(c*z) - 1)]]; t1 = E^t2; t1 = Series[t1, {z, 0, n+1}]; Coefficient[t1, z, n]*n!]; Pn[n_] := Module[{ d, e, t1}, t1 = 0; For[d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*Adn[d, n/d]/n]]; t1/(1 - x)]; Pnq[n_, q_] := Module[{t1}, t1 = Series[Pn[n], {x, 0, q+1}] ; Coefficient[t1, x, q]]; a[n_] := Pnq[n, 6]; Table[Print[an = a[n]]; an, {n, 1, 23}] (* Jean-François Alcover, Oct 04 2013, after N. J. A. Sloane's Maple code *)
    Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &], Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
    Table[SeriesCoefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &] /(n (1 - x)), {x, 0, 6}], {n, 1, 40}] (* Robert A. Russell, Feb 24 2018 *)
    From Robert A. Russell, May 29 2018: (Start)
    Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#, 60], 6 StirlingS2[n/#+5, 6] - 90 StirlingS2[n/#+4, 6] + 510 StirlingS2[n/#+3, 6] - 1350 StirlingS2[n/#+2, 6] + 1644 StirlingS2[n/#+1, 6] - 720 StirlingS2[n/#, 6], Divisible[#, 30], 5 StirlingS2[n/#+5, 6] - 77 StirlingS2[n/#+4, 6] + 451 StirlingS2[n/#+3, 6] - 1243 StirlingS2[n/#+2, 6] + 1584 StirlingS2[n/#+1, 6] - 720 StirlingS2[n/#, 6], Divisible[#, 20], 4 StirlingS2[n/#+5, 6] - 62 StirlingS2[n/#+4, 6] + 364 StirlingS2[n/#+3, 6] - 998 StirlingS2[n/#+2, 6] + 1252 StirlingS2[n/#+1, 6] - 560 StirlingS2[n/#, 6], Divisible[#, 15], 3 StirlingS2[n/#+5, 6] - 48 StirlingS2[n/#+4, 6] + 291 StirlingS2[n/#+3, 6] - 825 StirlingS2[n/#+2, 6] + 1074 StirlingS2[n/#+1, 6] - 495 StirlingS2[n/#, 6], Divisible[#, 12], 5 StirlingS2[n/#+5, 6] - 76 StirlingS2[n/#+4, 6] + 439 StirlingS2[n/#+3, 6] - 1196 StirlingS2[n/#+2, 6] + 1524 StirlingS2[n/#+1, 6] - 720 StirlingS2[n/#, 6], Divisible[#, 10], 3 StirlingS2[n/#+5, 6] - 49 StirlingS2[n/#+4, 6] + 305 StirlingS2[n/#+3, 6] - 891 StirlingS2[n/#+2, 6] + 1192 StirlingS2[n/#+1, 6] - 560 StirlingS2[n/#, 6], Divisible[#, 6], 4 StirlingS2[n/#+5, 6] - 63 StirlingS2[n/#+4, 6] + 380 StirlingS2[n/#+3, 6] - 1089 StirlingS2[n/#+2, 6] + 1464 StirlingS2[n/#+1, 6] - 720 StirlingS2[n/#, 6], Divisible[#, 5], 2 StirlingS2[n/#+5, 6] - 33 StirlingS2[n/#+4, 6] + 209 StirlingS2[n/#+3, 6] - 629 StirlingS2[n/#+2, 6] + 886 StirlingS2[n/#+1, 6] - 455 StirlingS2[n/#, 6], Divisible[#, 4], 3 StirlingS2[n/#+5, 6] - 48 StirlingS2[n/#+4, 6] + 293 StirlingS2[n/#+3, 6] - 844 StirlingS2[n/#+2, 6] + 1132 StirlingS2[n/#+1, 6] - 560 StirlingS2[n/#, 6], Divisible[#, 3], 2 StirlingS2[n/#+5, 6] - 34 StirlingS2[n/#+4, 6] + 220 StirlingS2[n/#+3, 6] - 671 StirlingS2[n/#+2, 6] + 954 StirlingS2[n/#+1, 6] - 495 StirlingS2[n/#, 6], Divisible[#, 2], 2 StirlingS2[n/#+5, 6] - 35 StirlingS2[n/#+4, 6] + 234 StirlingS2[n/#+3, 6] - 737 StirlingS2[n/#+2, 6] + 1072 StirlingS2[n/#+1, 6] - 560 StirlingS2[n/#, 6], True, StirlingS2[n/#+5, 6] - 19 StirlingS2[n/#+4, 6] + 138 StirlingS2[n/#+3, 6] - 475 StirlingS2[n/#+2, 6] + 766 StirlingS2[n/#+1, 6] - 455 StirlingS2[n/#, 6]] &], {n, 1, 40}]
    mx = 40; Drop[CoefficientList[Series[1-Sum[(EulerPhi[d] / d) Which[ Divisible[d, 60], Log[1-6x^d], Divisible[d, 30], (3 Log[1-6x^d] + Log[1-2x^d]) / 4, Divisible[d, 20], (5 Log[1-6x^d] + 2 Log[1-3x^d]) / 9, Divisible[d, 15], (5 Log[1-6x^d] + 3 Log[1-4x^d] + 3 Log[1-2x^d]) / 16, Divisible[d, 12], (4 Log[1-6x^d] + Log[1-x^d]) / 5, Divisible[d, 10], (11 Log[1-6x^d] + 8 Log[1-3x^d] + 9 Log[1-2x^d]) / 36, Divisible[d, 6], (11 Log[1-6x^d] + 5 Log[1-2x^d] + 4 Log[1-x^d]) / 20, Divisible[d, 5], (29 Log[1-6x^d] + 3 Log[1-4x^d] + 8 Log[1-3x^d] + 27 Log[1-2x^d] + 24 Log[1-x^d]) / 144, Divisible[d, 4], (16 Log[1-6x^d] + 10 Log[1-3x^d] + 9 Log[1-x^d]) / 45, Divisible[d, 3], (9 Log[1-6x^d] + 15 Log[1-4x^d] + 15 Log[1-2x^d] + 16 Log[1-x^d]) / 80, Divisible[d, 2], (19 Log[1-6x^d] + 40 Log[1-3x^d] + 45 Log[1-2x^d] + 36 Log[1-x^d]) / 180, True, (Log[1-6 x^d] + 15 Log[1-4 x^d] + 40 Log[1-3 x^d] + 135 Log[1-2 x^d] + 264 Log[1-x^d]) / 720], {d, 1, mx}], {x, 0, mx}], x], 1]
    (End)

Formula

Use de Bruijn's generalization of Polya's enumeration theorem as discussed in reference.
From Robert A. Russell, May 29 2018: (Start)
a(n) = (1/n)*Sum_{d|n} phi(d) * ([d==0 mod 60] * (6*S2(n/d + 5, 6) - 90*S2(n/d + 4, 6) + 510*S2(n/d + 3, 6) - 1350*S2(n/d + 2, 6) + 1644*S2(n/d + 1, 6) - 720*S2(n/d, 6)) + [d==30 mod 60] * (5*S2(n/d + 5, 6) - 77*S2(n/d + 4, 6) + 451*S2(n/d + 3, 6) - 1243*S2(n/d + 2, 6) + 1584*S2(n/d + 1, 6) - 720*S2(n/d, 6)) + [d==20 mod 60 | d==40 mod 60] * (4*S2(n/d + 5, 6) - 62*S2(n/d + 4, 6) + 364*S2(n/d + 3, 6) - 998*S2(n/d + 2, 6) + 1252*S2(n/d + 1, 6) - 560*S2(n/d, 6)) + [d==15 mod 60 | d==45 mod 60] * (3*S2(n/d + 5, 6) - 48*S2(n/d + 4, 6) + 291*S2(n/d + 3, 6) - 825*S2(n/d + 2, 6) + 1074*S2(n/d + 1, 6) - 495*S2(n/d, 6)) + [d mod 60 in {12,24,36,48}] * (5*S2(n/d + 5, 6) - 76*S2(n/d + 4, 6) + 439*S2(n/d + 3, 6) - 1196*S2(n/d + 2, 6) + 1524*S2(n/d + 1, 6) - 720*S2(n/d, 6)) + [d=10 mod 60 | d==50 mod 60] * (3*S2(n/d +5 , 6) - 49*S2(n/d + 4, 6) + 305*S2(n/d + 3, 6) - 891*S2(n/d + 2, 6) + 1192*S2(n/d + 1, 6) - 560*S2(n/d, 6)) + [d mod 60 in {6,18,42,54}] * (4*S2(n/d + 5, 6) - 63*S2(n/d + 4, 6) + 380*S2(n/d + 3, 6) - 1089*S2(n/d + 2, 6) + 1464*S2(n/d + 1, 6) - 720*S2(n/d, 6)) + [d mod 60 in {5,25,35,55}] * (2*S2(n/d + 5, 6) - 33*S2(n/d + 4, 6) + 209*S2(n/d + 3, 6) - 629*S2(n/d + 2, 6) + 886*S2(n/d + 1, 6) - 455*S2(n/d, 6)) + [d mod 60 in {4,8,16,28,32,44,52,56}] * (3*S2(n/d + 5, 6) - 48*S2(n/d + 4, 6) + 293*S2(n/d + 3, 6) - 844*S2(n/d + 2, 6) + 1132*S2(n/d + 1, 6) - 560*S2(n/d, 6)) + [d mod 60 in {3,9,21,27,33,39,51,57}] * (2*S2(n/d + 5, 6) - 34*S2(n/d + 4, 6) + 220*S2(n/d + 3, 6) - 671*S2(n/d + 2, 6) + 954*S2(n/d + 1, 6) - 495*S2(n/d, 6)) + [d mod 60 in {2,14,22,26,34,38,46,58}] * (2*S2(n/d + 5, 6) - 35*S2(n/d + 4, 6) + 234*S2(n/d + 3, 6) - 737*S2(n/d + 2, 6) + 1072*S2(n/d + 1, 6) - 560*S2(n/d, 6)) + [d mod 60 in {1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59}] *
(S2[n/d + 5, 6) - 19*S2(n/d + 4, 6) + 138*S2(n/d + 3, 6) -
475*S2(n/d + 2, 6) + 766*S2(n/d + 1,6) - 455*S2(n/d, 6))), where S2(n,k) is the Stirling subset number, A008277.
G.f.: 1 - Sum_{d>0} (phi(d) / d) * ([d==0 mod 60] * log(1-6x^d) + [d==30 mod 60] * (3*log(1-6x^d) + log(1-2x^d)) / 4 + [d==20 mod 60 | d==40 mod 60] * (5*log(1-6x^d) + 2*log(1-3x^d)) / 9 + [d==15 mod 60 | d==45 mod 60] * (5*log(1-6x^d) + 3*log(1-4x^d) + 3*log(1-2x^d)) / 16 + [d mod 60 in {12,24,36,48}] * (4*log(1-6x^d) + log(1-x^d)) / 5 + [d=10 mod 60 | d==50 mod 60] * (11*log(1-6x^d) + 8*log(1-3x^d) + 9*log(1-2x^d)) / 36 + [d mod 60 in {6,18,42,54}] * (11*log(1-6x^d) + 5*log(1-2x^d) + 4*log(1-x^d)) / 20 + [d mod 60 in {5,25,35,55}] * (29*log(1-6x^d) + 3*log(1-4x^d) + 8*log(1-3x^d) + 27*log(1-2x^d) + 24*log(1-x^d)) / 144 + [d mod 60 in {4,8,16,28,32,44,52,56}] * (16*log(1-6x^d) + 10*log(1-3x^d) + 9*log(1-x^d)) / 45 + [d mod 60 in {3,9,21,27,33,39,51,57}] * (9*log(1-6x^d) + 15*log(1-4x^d) + 15*log(1-2x^d) + 16*log(1-x^d)) / 80 + [d mod 60 in {2,14,22,26,34,38,46,58}] * (19*log(1-6x^d) + 40*log(1-3x^d) + 45*log(1-2x^d) + 36*log(1-x^d)) / 180 + [d mod 60 in {1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59}] * (log(1-6x^d) + 15*log(1-4x^d) + 40*log(1-3x^d) + 135*log(1-2x^d) + 264*log(1-x^d)) / 720).
(End)

A056286 Number of n-bead necklaces with exactly six different colored beads.

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 2160, 23940, 211680, 1643544, 11748240, 79419180, 516257280, 3262443120, 20193277104, 123071707080, 741419995680, 4427490147480, 26264144909520, 155018841055596, 911509010154720, 5344538384445120, 31272099902089200, 182707081122261480
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed.

Examples

			For n=6, the 120 necklaces are A followed by the 120 permutations of BCDEF.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column k=6 of A087854.

Programs

  • Mathematica
    k=6; Table[k!DivisorSum[n,EulerPhi[#]StirlingS2[n/#,k]&]/n,{n,1,30}] (* Robert A. Russell, Sep 26 2018 *)

Formula

a(n) = A054625(n) - 6*A001869(n) + 15*A001868(n) - 20*A001867(n) + 15*A000031(n) - 6.
From Robert A. Russell, Sep 26 2018: (Start)
a(n) = (k!/n) Sum_{d|n} phi(d) S2(n/d,k), where k=6 is the number of colors and S2 is the Stirling subset number A008277.
G.f.: -Sum_{d>0} (phi(d)/d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=6 is the number of colors. (End)

A056341 Number of bracelets of length n using a maximum of six different colored beads.

Original entry on oeis.org

6, 21, 56, 231, 888, 4291, 20646, 107331, 563786, 3037314, 16514106, 90782986, 502474356, 2799220041, 15673673176, 88162676511, 497847963696, 2821127825971, 16035812864946, 91404068329560
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet.

Examples

			For n=2, the 21 bracelets are AA, AB, AC, AD, AE, AF, BB, BC, BD, BE, BF, CC, CD, CE, CF, DD, DE, DF, EE, EF, and FF. - _Robert A. Russell_, Sep 24 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]

Crossrefs

Cf. a(n) = A081720(n,6), n >= 6. - Wolfdieter Lang, Jun 03 2012
Column 6 of A051137.
Equals (A054625 + A056488) / 2 = A054625 - A278642 = A278642 + A056488.

Programs

  • Mathematica
    mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-6*x^n]/n,{n,mx}]+(1+6 x+15 x^2)/(1-6 x^2))/2,{x,0,mx}],x] (* Herbert Kociemba, Nov 02 2016 *)
    k=6; Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}] (* Robert A. Russell, Sep 24 2018 *)

Formula

a(n) = Sum_{d|n} phi(d)*6^(n/d)/(2*n);
a(n) = 6^((n+1)/2)/2 for n odd,
(7/4)*6^(n/2) for n even.
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 6*x^n)/n + (1+6*x+15*x^2)/(1-6*x^2))/2. - Herbert Kociemba, Nov 02 2016

A184291 Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..5 arrays.

Original entry on oeis.org

6, 21, 21, 76, 351, 76, 336, 7826, 7826, 336, 1560, 210456, 1119936, 210456, 1560, 7826, 6047412, 181402676, 181402676, 6047412, 7826, 39996, 181410426, 31345666736, 176319685116, 31345666736, 181410426, 39996, 210126, 5597460306
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Examples

			Table starts
      6        21          76          336        1560          7826      39996
     21       351        7826       210456     6047412     181410426 5597460306
     76      7826     1119936    181402676 31345666736 5642220395616
    336    210456   181402676 176319685116
   1560   6047412 31345666736
   7826 181410426
  39996
		

Crossrefs

Columns 1-3 are A054625, A184289, A184290.

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*6^(n*(k/LCM[c, d])), {d, Divisors[k]}], {c, Divisors[n]}]; Table[T[n-k+1, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Andrew Howroyd *)
  • PARI
    T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 6^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017

Formula

T(n,k) = (1/(n*k)) * Sum_{c|n} Sum_{d|k} phi(c) * phi(d) * 6^(n*k/lcm(c,d)). - Andrew Howroyd, Sep 27 2017

A054613 a(n) = Sum_{d|n} phi(d)*6^(n/d).

Original entry on oeis.org

0, 6, 42, 228, 1344, 7800, 46956, 279972, 1681008, 10078164, 60474120, 362797116, 2176832112, 13060694088, 78364444284, 470185001040, 2821111589856, 16926659444832, 101559966840108, 609359740010604, 3656158500550080
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Crossrefs

Column k=6 of A185651.
Cf. A054625.

Programs

  • PARI
    a(n) = if(n==0, 0, sumdiv(n, d, eulerphi(d)*6^(n/d))); \\ Altug Alkan, Mar 16 2018

Formula

a(n) = n * A054625(n).
a(n) = Sum_{k=1..n} 6^gcd(n,k). - Ilya Gutkovskiy, Apr 16 2021

A121775 T(n, k) = Sum_{d|n} phi(n/d)*binomial(d,k) for n>0, T(0, 0) = 1. Triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 5, 3, 1, 4, 8, 7, 4, 1, 5, 9, 10, 10, 5, 1, 6, 15, 20, 21, 15, 6, 1, 7, 13, 21, 35, 35, 21, 7, 1, 8, 20, 36, 60, 71, 56, 28, 8, 1, 9, 21, 42, 86, 126, 126, 84, 36, 9, 1, 10, 27, 59, 130, 215, 253, 210, 120, 45, 10, 1, 11, 21, 55, 165, 330, 462, 462, 330, 165, 55
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2006

Keywords

Comments

For n>0, (1/n)*Sum_{k=0..n} T(n,k)*(c-1)^k is the number of n-bead necklaces with c colors. See the cross references.

Examples

			Triangle begins:
[ 0]  1;
[ 1]  1,  1;
[ 2]  2,  3,  1;
[ 3]  3,  5,  3,   1;
[ 4]  4,  8,  7,   4,   1;
[ 5]  5,  9, 10,  10,   5,   1;
[ 6]  6, 15, 20,  21,  15,   6,   1;
[ 7]  7, 13, 21,  35,  35,  21,   7,   1;
[ 8]  8, 20, 36,  60,  71,  56,  28,   8,  1;
[ 9]  9, 21, 42,  86, 126, 126,  84,  36,  9,  1;
[10] 10, 27, 59, 130, 215, 253, 210, 120, 45, 10, 1;
		

Crossrefs

Cf. A053635 (row sums), A121776 (antidiagonal sums), A054630, A327029.
Cf. A000031 (c=2), A001867 (c=3), A001868 (c=4), A001869 (c=5), A054625 (c=6), A054626 (c=7), A054627 (c=8), A054628 (c=9), A054629 (c=10).

Programs

  • PARI
    T(n,k)=if(n
    				
  • SageMath
    # uses[DivisorTriangle from A327029]
    DivisorTriangle(euler_phi, binomial, 13) # Peter Luschny, Aug 24 2019

A278642 Number of pairs of orientable necklaces with n beads and up to 6 colors; i.e., turning the necklace over does not leave it unchanged. The turned-over necklace is not included in the count.

Original entry on oeis.org

0, 0, 0, 20, 105, 672, 3535, 19350, 102795, 556010, 3010098, 16467450, 90619690, 502194420, 2798240265, 15671993560, 88156797855, 497837886000, 2821092554035, 16035752398770, 91403856697944, 522308167195260, 2991401733402075, 17168047238861070, 98716274117752900, 568605754068247644, 3280417827002225910, 18953525314104758810
Offset: 0

Views

Author

Herbert Kociemba, Nov 24 2016

Keywords

Comments

Number of chiral bracelets of n beads using up to six different colors.

Crossrefs

Column 6 of A293496.
Cf. A059076 (2 colors), A278639 (3 colors), A278640 (4 colors), A278641 (5 colors).

Programs

  • Mathematica
    mx = 40; f[x_, k_] := (1 - Sum[EulerPhi[n] * Log[1 - k * x^n]/n,{n, mx}] - Sum[Binomial[k, i] * x^i, {i, 0, 2}]/(1 - k * x^2))/2; CoefficientList[Series[f[x, 6], {x, 0, mx}], x]
    k = 6; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) - (k^Floor[(n + 1)/2] + k^Ceiling[(n + 1)/2])/4, {n, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)

Formula

Equals (A054625(n) - A056488(n)) / 2 = A054625(n) - A056341(n) = A056341(n) - A056488(n), for n >= 1.
G.f.: k = 6, (1 - Sum_{n >= 1} phi(n)*log(1 - k*x^n)/n - Sum_{i = 0..2} Binomial[k, i]*x^i / ( 1 - k*x^2) )/2.
For n > 0, a(n) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/2n)* Sum_{d|n} phi(d)*k^(n/d), where k = 6 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
Showing 1-8 of 8 results.