cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A072677 a(n) = prime(prime(n)+1) where prime(k) is the k-th prime.

Original entry on oeis.org

5, 7, 13, 19, 37, 43, 61, 71, 89, 113, 131, 163, 181, 193, 223, 251, 281, 293, 337, 359, 373, 409, 433, 463, 521, 557, 569, 593, 601, 619, 719, 743, 787, 809, 863, 881, 929, 971, 997, 1033, 1069, 1091, 1163, 1181, 1213, 1223, 1301, 1423, 1439, 1451, 1481, 1511, 1531, 1601, 1627, 1693, 1733, 1747, 1789, 1831, 1861, 1931
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Jul 05 2002

Keywords

Comments

Prime numbers q for which the number of prime numbers smaller than q is also a prime number.

Examples

			a(4)=prime(prime(4)+1), prime(4)=7, hence a(4)=prime(8)=19.
163 is in the sequence because (1) it is a prime number, (2) there are 37 prime numbers smaller than 163 and 37 is also a prime number.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(ithprime(ithprime(i)+1),i=1..51);
  • Mathematica
    Prime[Prime[Range[60]]+1] (* Harvey P. Dale, Nov 07 2016 *)
  • PARI
    a(n) = prime(prime(n)+1); \\ Michel Marcus, Nov 17 2017

Extensions

Edited by N. J. A. Sloane, Nov 04 2018 at the suggestion of Georg Fischer, Nov 03 2018, merging a duplicate entry with this one.

A064554 a(n) = Min {k | A064553(k) = n}.

Original entry on oeis.org

1, 2, 3, 4, 7, 6, 13, 8, 9, 14, 29, 12, 37, 26, 21, 16, 53, 18, 61, 28, 39, 58, 79, 24, 49, 74, 27, 52, 107, 42, 113, 32, 87, 106, 91, 36, 151, 122, 111, 56, 173, 78, 181, 116, 63, 158, 199, 48, 169, 98, 159, 148, 239, 54, 203, 104, 183, 214, 271, 84, 281, 226, 117, 64
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 21 2001

Keywords

Comments

A064553(a(n)) = n and A064553(a(k)) <> k for k < a(n). For prime p, a(p)=prime(p-1), which is sequence A055003. - T. D. Noe, Dec 12 2004
a(n) is not multiplicative because a(7*13) = a(91) = 463, but a(7)*a(13) = 13*37 = 481 and 91 is the smallest possible such n. - Christian G. Bower, May 19 2005
a(n) = A080688(n,1). - Reinhard Zumkeller, Oct 01 2012
Minimal shifted Heinz number of a factorization of n, where the shifted Heinz number of a factorization (y_1, ..., y_k) is prime(y_1 - 1) * ... * prime(y_k - 1). - Gus Wiseman, Sep 05 2018

Crossrefs

Cf. A055003 (prime(prime(n)-1)).

Programs

  • Haskell
    a064554 = head . a080688_row  -- Reinhard Zumkeller, Oct 01 2012
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    Table[Min[Times@@Prime/@(#-1)&/@facs[n]],{n,100}] (* Gus Wiseman, Sep 05 2018 *)

A140853 a(n) = prime(prime(n) - 1) - 1, where prime(n) is the n-th prime.

Original entry on oeis.org

1, 2, 6, 12, 28, 36, 52, 60, 78, 106, 112, 150, 172, 180, 198, 238, 270, 280, 316, 348, 358, 396, 420, 456, 502, 540, 556, 576, 592, 612, 700, 732, 768, 786, 856, 862, 910, 952, 982, 1020, 1060, 1068, 1150, 1162, 1192, 1212, 1290, 1398, 1428, 1438, 1458
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 30 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Prime[Prime[n - 1] - 1] - 1, {n, 2, 60}] (* Vincenzo Librandi, Apr 05 2015 *)
  • PARI
    apply(p->prime(p-1)-1, primes(100))

Formula

a(n) = A055003(n) - 1. - N. J. A. Sloane, Jul 31 2008
a(n) ~ n (log n)^2. - Charles R Greathouse IV, Apr 07 2015

Extensions

Corrected (382 replaced by 396) and extended by R. J. Mathar, Apr 27 2010

A290641 Multiplicative with a(p^e) = prime(p-1)^e.

Original entry on oeis.org

1, 2, 3, 4, 7, 6, 13, 8, 9, 14, 29, 12, 37, 26, 21, 16, 53, 18, 61, 28, 39, 58, 79, 24, 49, 74, 27, 52, 107, 42, 113, 32, 87, 106, 91, 36, 151, 122, 111, 56, 173, 78, 181, 116, 63, 158, 199, 48, 169, 98, 159, 148, 239, 54, 203, 104, 183, 214, 271, 84, 281, 226, 117, 64, 259
Offset: 1

Views

Author

Michel Marcus, Aug 08 2017

Keywords

Comments

a(n) = A064554(n) for 1 <= n < 91, but a(91) = 481 differs from A064554(91) = 463. - Georg Fischer, Oct 23 2018

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Map[Prime[#1 - 1]^#2 & @@ # &, FactorInteger[#]]] &, 65] (* Michael De Vlieger, Apr 22 2021 *)
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = prime(f[k, 1]-1);); factorback(f);}
    
  • Python
    from sympy import factorint, prime
    from operator import mul
    from functools import reduce
    def a(n):
        return 1 if n==1 else reduce(mul, [prime(p - 1)**e for p, e in factorint(n).items()])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Aug 08 2017
  • Scheme
    (define (A290641 n) (if (= 1 n) n (* (A000040 (+ -1 (A020639 n))) (A290641 (A032742 n))))) ;; Antti Karttunen, Aug 08 2017
    

Formula

From Antti Karttunen, Aug 08 2017: (Start)
a(n) = A064989(A064988(n)).
A046523(a(n)) = A046523(n). [Preserves the prime signature of n].
(End)

A050298 Triangle read by rows: T(n,k) = p(r), where r is the (n-k+1)-th number such that A001222(r+1) = k, and p(r) is the r-th prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 13, 19, 31, 47, 29, 23, 59, 83, 127, 37, 41, 67, 149, 211, 307, 53, 43, 101, 167, 353, 499, 709, 61, 71, 103, 241, 401, 823, 1153, 1613, 79, 73, 109, 257, 587, 937, 1873, 2647, 3659, 107, 89, 179, 277, 607, 1319, 2113, 4201, 5843, 8147
Offset: 1

Views

Author

Alford Arnold, Apr 09 2003

Keywords

Comments

The first column is A055003 and the main diagonal is A051438. When viewed as a sequence, this is a permutation of the prime numbers.

Examples

			a(14) = T(5,4) = p(23) = 83 because A001222(23+1) = A001222(24) = 4 since 24 has four prime factors, and this is the (5-4+1) = 2nd number with A001222 = 4.
The table begins:
2
3  5
7  11 17
13 19 31 47
29 23 59 83  127
37 41 67 149 211 307
...
		

Crossrefs

Programs

  • Maple
    with(numtheory): A050298ind := proc(n,k) option remember: local f,m: if(n=k)then return 2^n-1: fi: for m from procname(n-1,k)+1 do if(bigomega(m+1)=k)then return m: fi: od: end: for n from 1 to 6 do seq(ithprime(A050298ind(n,k)),k=1..n);od; # Nathaniel Johnston, May 07 2011

Extensions

Better name and extended by Nathaniel Johnston, May 07 2011

A143444 A054525 * the primes prefaced by 0.

Original entry on oeis.org

0, 2, 3, 3, 7, 6, 13, 12, 16, 14, 29, 17, 37, 26, 33, 30, 53, 32, 61, 41, 55, 42, 79, 40, 82, 58, 82, 59, 107, 44, 113, 80, 99, 82, 119, 70, 151, 94, 123, 88, 173, 74, 181, 115, 134, 116, 199, 98, 210, 122, 173, 133, 239, 100, 215, 142, 199, 160, 271, 107, 281, 168, 206
Offset: 1

Views

Author

Gary W. Adamson, Aug 15 2008

Keywords

Comments

a(5) = 7 = (-1, 0, 0, 0, 1) dot (0, 2, 3, 5, 7).
a(p(n)) = p(n-1) since prime rows of the Mobius transform have only one nonzero multiplier besides the (-1) which is multiplied * the 0 in (0, 2, 3, 5, 7,...). Cf. A055003: (1, 3, 7, 13, 29, 37,...) a subset of primes in the sequences, but other terms may be primes.

Examples

			a(6) = 6 = (1, -1, -1, 0, 0, 1) dot (0, 2, 3, 5, 7, 11) where (1, -1, -1, 0, 0, 1) = row 6 of A051731, the Mobius transform.
		

Crossrefs

Formula

Mobius transform of the primes prefaced by 0.

Extensions

a(12) replaced by 17 and extended by R. J. Mathar, Jan 19 2009

A275990 a(n) = prime(prime(n)-1) - prime(n).

Original entry on oeis.org

0, 0, 2, 6, 18, 24, 36, 42, 56, 78, 82, 114, 132, 138, 152, 186, 212, 220, 250, 278, 286, 318, 338, 368, 406, 440, 454, 470, 484, 500, 574, 602, 632, 648, 708, 712, 754, 790, 816, 848, 882, 888, 960, 970, 996, 1014, 1080, 1176, 1202, 1210, 1226, 1254, 1270, 1332, 1362, 1404
Offset: 1

Views

Author

Terry D. Grant, Aug 15 2016

Keywords

Examples

			For n=3, prime(prime(3)-1) = 7, and prime(3) = 5, therefore a(3) = 7 - 5 = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[Prime[Prime[n]-1] - Prime[n], {n, 1, 100}]
  • PARI
    a(n) = prime(prime(n)-1) - prime(n); \\ Michel Marcus, Aug 18 2016

Formula

a(n) = A000040(A006093(n)) - A000040(n) = A055003(n) - A000040(n).

A175248 Noncomposites (A008578) with noncomposite (A008578) subscripts.

Original entry on oeis.org

1, 2, 3, 7, 13, 29, 37, 53, 61, 79, 107, 113, 151, 173, 181, 199, 239, 271, 281, 317, 349, 359, 397, 421, 457, 503, 541, 557, 577, 593, 613, 701, 733, 769, 787, 857, 863, 911, 953, 983, 1021, 1061, 1069, 1151, 1163, 1193, 1213, 1291, 1399, 1429, 1439, 1459
Offset: 1

Views

Author

Jaroslav Krizek, Mar 13 2010

Keywords

Comments

Noncomposite numbers of order 2.
a(n) = noncomposite(noncomposite(n)) = A008578(A008578(n)). a(1) = 1, a(n) = A055003(n) for n >=2. a(n) U A175249(n+1) = A008578 for n >= 1.

Examples

			a(5) = 13 because a(5) = q(q(5)) = q(7) = 13, q = noncomposite.
		

Crossrefs

Formula

a(n)=A008578(A008578(n)).

Extensions

More terms from Juri-Stepan Gerasimov, Apr 15 2010
Edited by N. J. A. Sloane, Apr 21 2010 at the suggestion of R. J. Mathar
Showing 1-8 of 8 results.