cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A065043 Characteristic function of the numbers with an even number of prime factors (counted with multiplicity): a(n) = 1 if n = A028260(k) for some k then 1 else 0.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 05 2001

Keywords

Crossrefs

Characteristic function of A028260 (positions of 1's). Cf. also A026424 (positions of 0's) and A320655.
One less than A007421.
Cf. also A066829, A353374.

Programs

  • Maple
    A065043 := proc(n)
        if type(numtheory[bigomega](n),'even') then
            1;
        else
            0;
        end if;
    end proc: # R. J. Mathar, Jun 26 2013
  • Mathematica
    Table[(LiouvilleLambda[n]+1)/2,{n,1,20}] (* Enrique Pérez Herrero, Jul 07 2012 *)
  • PARI
    { for (n=1, 1000, a=1 - bigomega(n)%2; write("b065043.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 04 2009
    
  • PARI
    A065043(n) = (1 - (bigomega(n)%2)); \\ Antti Karttunen, Apr 19 2022
    
  • Python
    from operator import ixor
    from functools import reduce
    from sympy import factorint
    def A065043(n): return (reduce(ixor, factorint(n).values(),0)&1)^1 # Chai Wah Wu, Jan 01 2023

Formula

a(n) = 1 - A001222(n) mod 2.
a(n) = A007421(n) - 1.
a(n) = 1 - A066829(n).
a(A028260(k)) = 1 and a(A026424(k)) = 0 for all k.
Dirichlet g.f.: (zeta(s)^2 + zeta(2*s))/(2*zeta(s)). - Enrique Pérez Herrero, Jul 06 2012
a(n) = (A008836(n) + 1)/2. - Enrique Pérez Herrero, Jul 07 2012
a(n) = A001222(2n) mod 2. - Wesley Ivan Hurt, Jun 22 2013
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = Sum_{n>=1} x^(n^2)/(1 - x^n). - Ilya Gutkovskiy, Apr 25 2017
From Antti Karttunen, Dec 01 2022: (Start)
For x, y >= 1, a(x*y) = 1 - abs(a(x)-a(y)).
a(n) = a(A046523(n)) = A356163(A003961(n)).
a(n) = A000035(A356163(n)+A347102(n)).
a(n) = A010052(n) + A353669(n).
a(n) = A353555(n) + A353557(n).
a(n) = A358750(n) + A358752(n).
a(n) = A353374(n) + A358775(n).
a(n) >= A356170(n).
(End)

Extensions

Corrected by Charles R Greathouse IV, Sep 02 2009

A055038 Number of numbers <= n with an odd number of prime factors (counted with multiplicity).

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 5, 5, 5, 6, 7, 8, 8, 8, 8, 9, 10, 11, 12, 12, 12, 13, 13, 13, 13, 14, 15, 16, 17, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 22, 23, 24, 25, 25, 26, 27, 27, 28, 28, 29, 30, 30, 30, 30, 30, 30, 31, 31, 32, 32, 33, 33, 33, 34, 35, 36, 36, 37, 38, 39, 40, 40, 41
Offset: 1

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Jun 01 2000

Keywords

Comments

Partial sums of A066829.

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 92.

Crossrefs

Programs

  • Haskell
    a055038 n = a055038_list !! (n-1)
    a055038_list = scanl1 (+) a066829_list
    -- Reinhard Zumkeller, Nov 19 2011
    
  • Mathematica
    Boole[OddQ[PrimeOmega[#]]]& /@ Range[100] // Accumulate (* Jean-François Alcover, Nov 21 2019 *)
  • PARI
    first(n)=my(s); vector(n,k,s+=bigomega(k)%2) \\ Charles R Greathouse IV, Sep 02 2015
    
  • Python
    from operator import ixor
    from functools import reduce
    from sympy import factorint
    def A055038(n): return sum(1 for i in range(1,n+1) if reduce(ixor, factorint(i).values(),0)&1) # Chai Wah Wu, Jan 01 2023

Formula

a(n) = (1/2)*Sum_{k=1..n} (1-lambda(k)) = (1/2)*(n-L(n)), where lambda(n) = A008836(n) and L(n) = A002819(n).

Extensions

Formula and more terms from Vladeta Jovovic, Dec 03 2001
Offset corrected by Reinhard Zumkeller, Nov 19 2011

A244152 Self-inverse permutation of natural numbers: a(1) = 1; thereafter, if n is k-th number with an odd number of prime divisors (counted with multiplicity) [i.e., n = A026424(k)], a(n) = A028260(1+a(k)), otherwise, when n is k-th number > 1 with an even number of prime divisors [i.e., n = A028260(1+k)], a(n) = A026424(a(k)).

Original entry on oeis.org

1, 4, 10, 2, 24, 7, 6, 55, 18, 3, 16, 15, 121, 44, 12, 11, 39, 9, 36, 35, 105, 31, 250, 5, 29, 28, 93, 26, 25, 86, 22, 82, 238, 79, 20, 19, 81, 72, 17, 68, 218, 65, 517, 14, 62, 67, 60, 202, 195, 57, 59, 56, 185, 477, 8, 52, 50, 175, 51, 47, 177, 45, 495, 167, 42, 161, 46, 40, 162, 169, 150, 38, 143, 455, 459, 140, 153, 1060, 34, 134, 37, 32
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2014

Keywords

Crossrefs

Similar entanglement permutations: A245603-A245604, A235491, A236854, A243347, A244319.

Formula

a(1) = 1, and for n > 1, if A066829(n) = 1, then a(n) = A028260(1 + A244152(A055038(n))), otherwise a(n) = A026424(A244152(A055037(n)-1)).
For all n > 1, A008836(a(n)) = -1 * A008836(n), where A008836 is Liouville's lambda-function.

A245603 Permutation of natural numbers: a(1) = 1; thereafter, if n is k-th number with an odd number of prime divisors (counted with multiplicity) [i.e., n = A026424(k)], a(n) = 2*a(k), otherwise, when n is k-th number > 1 with an even number of prime divisors [i.e., n = A028260(1+k)], a(n) = 1+(2*a(k)).

Original entry on oeis.org

1, 2, 4, 3, 8, 5, 6, 16, 9, 7, 10, 12, 32, 17, 11, 13, 18, 14, 20, 24, 33, 19, 64, 15, 21, 25, 34, 22, 26, 36, 28, 40, 65, 35, 23, 27, 48, 37, 29, 41, 66, 38, 128, 30, 42, 49, 50, 68, 67, 44, 39, 52, 72, 129, 31, 43, 51, 69, 56, 45, 80, 53, 130, 73, 57, 70, 46, 54, 81, 96, 74, 58, 82, 131, 132, 76, 71, 256, 60
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2014

Keywords

Crossrefs

Inverse: A245604.
Similar permutations: A143692, A244152, A244321, A245613, A245605, A245607.

Formula

a(1) = 1, and for n > 1, if A066829(n) = 1, then a(n) = 2 * A245603(A055038(n)), otherwise a(n) = 1 + (2 * A245603(A055037(n)-1)).
As a composition of related permutations:
a(n) = A244321(A245613(n)).
For all n >= 1, A000035(a(n)) = 1 - A066829(n). [Permutation A143692 has the same property.]

A245613 Permutation of natural numbers: a(1) = 1; thereafter, if n is k-th number with an odd number of prime divisors (counted with multiplicity) [i.e., n = A026424(k)], a(n) = A244991(a(k)), otherwise, when n is k-th number > 1 with an even number of prime divisors [i.e., n = A028260(1+k)], a(n) = A244990(1+a(k)).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 5, 16, 9, 7, 11, 10, 32, 18, 13, 12, 17, 15, 22, 20, 35, 19, 66, 14, 24, 21, 34, 25, 23, 33, 31, 45, 63, 37, 27, 26, 41, 36, 29, 43, 69, 40, 134, 30, 47, 39, 44, 68, 71, 50, 38, 46, 67, 131, 28, 49, 42, 70, 64, 52, 92, 48, 127, 65, 61, 75, 55, 51, 89, 83, 73, 60
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2014

Keywords

Comments

This shares with the permutation A122111 the property that each term of A028260 is mapped to a unique term of A244990 and each term of A026424 is mapped to a unique term of A244991.

Crossrefs

Formula

a(1) = 1, and for n > 1, if A066829(n) = 1, a(n) = A244991(a(A055038(n))), otherwise a(n) = A244990(1+a(A055037(n)-1)).
As a composition of related permutations:
a(n) = A244322(A245603(n)).
For all n >= 1, A066829(n) = A244992(a(n)).

A143692 Permutation of natural numbers: If n is k-th number with an odd number of prime divisors (counted with multiplicity) [i.e., n = A026424(k)], a(n) = 2*k, otherwise, when n is k-th number with an even number of prime divisors [i.e., n = A028260(k)], a(n) = (2*k)-1.

Original entry on oeis.org

1, 2, 4, 3, 6, 5, 8, 10, 7, 9, 12, 14, 16, 11, 13, 15, 18, 20, 22, 24, 17, 19, 26, 21, 23, 25, 28, 30, 32, 34, 36, 38, 27, 29, 31, 33, 40, 35, 37, 39, 42, 44, 46, 48, 50, 41, 52, 54, 43, 56, 45, 58, 60, 47, 49, 51, 53, 55, 62, 57, 64, 59, 66, 61, 63, 68, 70, 72, 65, 74, 76, 78
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 29 2008

Keywords

Comments

a(a(n)) = A143694(n).

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a243692 = (+ 1) . fromJust . (`elemIndex` a143691_list)
    -- Reinhard Zumkeller, Aug 07 2014
  • Maple
    N:= 1000: # to get a(1) to a(N)
    Odds,Evens:= selectremove(t -> numtheory:-bigomega(t)::odd,[$1..N]):
    for k from 1 to nops(Odds) do A[Odds[k]]:= 2*k od:
    for k from 1 to nops(Evens) do A[Evens[k]]:= 2*k-1 od:
    seq(A[k],k=1..N); # Robert Israel, Jul 27 2014
  • Mathematica
    m = 100;
    odds = Select[Range[m], OddQ[PrimeOmega[#]]&];
    evens = Select[Range[m], EvenQ[PrimeOmega[#]]&];
    Do[a[odds[[k]]] = 2k, {k, 1, Length[odds]}];
    Do[a[evens[[k]]] = 2k-1, {k, 1, Length[evens]}];
    Array[a, m] (* Jean-François Alcover, Mar 09 2019, from Maple *)

Formula

From Antti Karttunen, Jul 27 2014: (Start)
If A066829(n) = 1, then a(n) = 2 * A055038(n), otherwise a(n) = (2 * A055037(n)) - 1.
For all n >= 1, A000035(a(n)) = 1 - A066829(n). [Permutation A245603 has the same property].
(End)

Extensions

Name changed by Antti Karttunen, Jul 27 2014

A212818 Numbers up to 10^n with an even number of not necessarily distinct prime factors, or positive Liouville function.

Original entry on oeis.org

1, 5, 49, 493, 4953, 49856, 499735, 4999579, 49998058, 499987392, 4999941987, 49999828888, 499999738687, 4999999516711
Offset: 0

Views

Author

Martin Renner, May 28 2012

Keywords

Examples

			a(1) = 5 since up to 10 there are the five numbers 1, 4, 6, 9, 10 with an even number of prime factors, or positive Liouville function.
		

Crossrefs

Cf. A055037 (goes up to n rather than 10^n), A002819, A008836, A028260, A065043, A090410.

Programs

  • Maple
    zg:=0: zu:=0: G:=[]: U:=[]: k:=0:
    for i from 1 to 10^8 do if numtheory[bigomega](i) mod 2 = 0 then zg:=zg+1: else zu:=zu+1: fi: if i=10^k then G:=[op(G),zg]: U:=[op(U),zu]: k:=k+1: fi: od:
    print(G);
  • Mathematica
    Table[Length[Select[Range[10^n], EvenQ[PrimeOmega[#]] &]], {n, 0, 5}] (* Alonso del Arte, May 28 2012 *)
    Table[Count[LiouvilleLambda[Range[10^n]], 1], {n, 0, 5}] (* Ray Chandler, May 30 2012 *)

Formula

a(n) = A011557(n) - A212819(n).
a(n) = (10^n)/2 + A090410(n)/2. - Donovan Johnson, May 30 2012
a(n) = A055037(10^n). - Ray Chandler, May 30 2012

Extensions

a(9)-a(13) from Donovan Johnson, May 30 2012
Showing 1-7 of 7 results.