A055795 a(n) = binomial(n,4) + binomial(n,2).
0, 1, 3, 7, 15, 30, 56, 98, 162, 255, 385, 561, 793, 1092, 1470, 1940, 2516, 3213, 4047, 5035, 6195, 7546, 9108, 10902, 12950, 15275, 17901, 20853, 24157, 27840, 31930, 36456, 41448, 46937, 52955, 59535, 66711, 74518, 82992, 92170, 102090, 112791, 124313, 136697
Offset: 1
Links
- James Spahlinger, Table of n, a(n) for n = 1..1000
- Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372.
- Milan Janjic, Two Enumerative Functions
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7
- Eric Weisstein's World of Mathematics, Johnson Graph
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Tetrahedral Graph
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n*(n^3-6*n^2+23*n-18)/24: n in [1..100]]; // Wesley Ivan Hurt, Sep 29 2013
-
Maple
A055795:=n->binomial(n,4)+binomial(n,2); # Zerinvary Lajos, Jul 24 2006
-
Mathematica
Table[Binomial[n, 4] + Binomial[n, 2], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *) Table[n (n^3 - 6 n^2 + 23 n - 18)/24, {n, 100}] (* Wesley Ivan Hurt, Sep 29 2013 *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 3, 7, 15}, 50] (* Harvey P. Dale, Dec 07 2015 *) Total[Binomial[Range[20], #] & /@ {2, 4}] (* Eric W. Weisstein, Dec 01 2017 *) CoefficientList[Series[x (-1 + 2 x - 2 x^2)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017~ *)
-
Maxima
A055795(n):=n*(n^3-6*n^2+23*n-18)/24$ makelist(A055795(n), n, 1, 100); /* Wesley Ivan Hurt, Sep 29 2013 */
-
PARI
a(n)= n*(n^3-6*n^2+23*n-18)/24 \\ Wesley Ivan Hurt, Sep 29 2013
Formula
a(1) = 1; a(n) = a(n-1) + 1 + A004006(n-1).
a(n+1) = C(n, 1) + C(n, 2) + C(n, 3) + C(n, 4). - James Sellers, Mar 16 2002
Row sums of triangle A134394. Also, binomial transform of [1, 2, 2, 2, 1, 0, 0, 0, ...]. - Gary W. Adamson, Oct 23 2007
a(n) = n*(n^3 - 6*n^2 + 23*n - 18)/24. - Gary Detlefs, Dec 08 2011
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(1)=0, a(2)=1, a(3)=3, a(4)=7, a(5)=15. - Harvey P. Dale, Dec 07 2015
Extensions
Better description from Leonid Broukhis, Oct 24 2000
Edited by Zerinvary Lajos, Jul 24 2006
Offset corrected and Sellers formula adjusted by Gary Detlefs, Nov 28 2011
Comments