cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A064205 Numbers k such that sigma(k) + tau(k) is a prime.

Original entry on oeis.org

1, 2, 8, 128, 162, 512, 32768, 41472, 101250, 125000, 1414562, 3748322, 5120000, 6837602, 8000000, 13530402, 24234722, 35701250, 66724352, 75031250, 78125000, 86093442, 91125000, 171532242, 177058562, 226759808, 233971712, 617831552, 664301250, 686128968
Offset: 1

Views

Author

Jason Earls, Sep 21 2001

Keywords

Comments

The terms involve powers of small primes. - Jud McCranie, Nov 29 2001
From Kevin P. Thompson, Jun 20 2022: (Start)
Theorem: Terms that are greater than one must be twice a square.
Proof: Since sigma(k) is odd if and only if k is a square or twice a square, and tau(k) is odd if and only if k is a square, then an odd sum only occurs when k is twice a square, in which case sigma(k) is odd and tau(k) is even. So, these are the only candidates for sigma(k) + tau(k) being prime.
Theorem: No terms are congruent to 4 or 6 (mod 10).
Proof: Since no square ends in 2, 3, 7, or 8, and each term > 1 is twice a square, no term ends in 4 or 6. (End)

Examples

			128 is a term since sigma(128) + tau(128) = 255 + 8 = 263, which is prime.
		

Crossrefs

Cf. A007503 (sigma+tau), A065061, A055813.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ DivisorSigma[1, n] + DivisorSigma[0, n]], Print[n]], {n, 1, 10^7}]
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(sigma(m) + numdiv(m)), write("b064205.txt", n++, " ", m); if (n==100, break)) ) } \\ Harry J. Smith, Sep 10 2009
    
  • Python
    from itertools import count, islice
    from sympy import isprime, divisor_sigma as s, divisor_count as t
    def agen(): # generator of terms
        yield 1
        yield from (k for k in (2*i*i for i in count(1)) if isprime(s(k)+t(k)))
    print(list(islice(agen(), 30))) # Michael S. Branicky, Jun 20 2022

Extensions

More terms from Robert G. Wilson v, Nov 12 2001
More terms from Labos Elemer, Nov 22 2001
More terms from Jud McCranie, Nov 29 2001
a(28) from Harry J. Smith, Sep 10 2009

A065061 Numbers k such that sigma(k) - tau(k) is a prime.

Original entry on oeis.org

3, 8, 162, 512, 1250, 8192, 31250, 32768, 41472, 663552, 2531250, 3748322, 5120000, 6837602, 7558272, 8000000, 15780962, 33554432, 35701250, 42762752, 45334242, 68024448, 75031250, 78125000, 91125000, 137149922, 243101250, 512000000, 907039232, 959570432
Offset: 1

Views

Author

Jason Earls, Nov 06 2001

Keywords

Comments

From Kevin P. Thompson, Jun 20 2022: (Start)
Terms greater than 3 must be twice a square (see A064205).
No terms are congruent to 4 or 6 (mod 10) (see A064205).
(End)

Examples

			162 is a term since sigma(162) - tau(162) = 363 - 10 = 353, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ DivisorSigma[1, n] - DivisorSigma[0, n]], Print[n]], {n, 1, 10^7}]
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(sigma(m) - numdiv(m)), write("b065061.txt", n++, " ", m); if (n==100, return)) ) } \\ Harry J. Smith, Oct 05 2009
    
  • Python
    from itertools import count, islice
    from sympy import isprime, divisor_sigma as s, divisor_count as t
    def agen(): # generator of terms
        yield 3
        yield from (k for k in (2*i*i for i in count(1)) if isprime(s(k)-t(k)))
    print(list(islice(agen(), 30))) # Michael S. Branicky, Jun 20 2022

Extensions

a(17)-a(28) from Harry J. Smith, Oct 05 2009
a(29)-a(30) from Kevin P. Thompson, Jun 20 2022

A229264 Primes in A065387 in the order of their appearance.

Original entry on oeis.org

2, 19, 19, 79, 103, 113, 257, 523, 509, 1151, 1279, 1193, 1579, 2273, 3061, 2389, 2693, 2843, 5003, 4831, 5119, 7411, 5693, 5623, 8623, 6323, 10139, 8933, 18401, 14957, 20411, 20479, 21191, 20123, 29683, 28211, 36833, 55021, 57203, 68743, 48761, 66533, 62423
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			Third term of A038344 is 9 and sigma(9) + phi(9) = 13 + 6 = 19 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a, n; for n from 1 to q do a:=sigma(n)+phi(n);
    if isprime(a) then print(a); fi; od; end: P(10^6);
  • Mathematica
    Select[Table[DivisorSigma[1,n]+EulerPhi[n],{n,30000}],PrimeQ] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    lista(kmax) = {my(f, s); for(k = 1, kmax, f = factor(k); s= sigma(f) + eulerphi(f); if(isprime(s), print1(s, ", ")));} \\ Amiram Eldar, Nov 19 2024

Extensions

Name corrected by Amiram Eldar, Nov 19 2024

A229268 Primes of the form sigma(k) - tau(k), where sigma(k) = A000203(k) and tau(k) = A000005(k).

Original entry on oeis.org

2, 11, 353, 1013, 2333, 16369, 58579, 65519, 123733, 1982273, 7089683, 5778653, 12795053, 10500593, 22586027, 19980143, 24126653, 67108837, 72494713, 90781993, 106199593, 203275951, 164118923, 183105421, 320210549, 259997173, 794091653, 1279963973
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			Second term of A065061 is 8 and sigma(8) - tau(8) = 15 - 4 = 11 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,n; a:= sigma(n)-tau(n); for n from 1 to q do
    if isprime(a) then print(a); fi; od; end: P(10^6);
  • Mathematica
    Join[{2}, Select[(DivisorSigma[1, #] - DivisorSigma[0, #]) & /@ (2*Range[20000]^2), PrimeQ]] (* Amiram Eldar, Dec 06 2022 *)

Formula

a(n) = A000203(A065061(n)) - A000005(A065061(n)). - Michel Marcus, Sep 21 2013
a(n) = A065608(A065061(n)). - Amiram Eldar, Dec 06 2022

Extensions

More terms from Michel Marcus, Sep 21 2013

A229266 Primes of the form sigma(k) + tau(k) + phi(k), where sigma(k) = A000203(k), tau(k) = A000005(k) and phi(k) = A000010(k).

Original entry on oeis.org

3, 23, 557, 1289, 2447, 3779, 9209, 10331, 11351, 18367, 14051, 34351, 42953, 67883, 95717, 96587, 134807, 164249, 193057, 310553, 253159, 321397, 383723, 548213, 657311, 499151, 630023, 516251, 732181, 713927, 927013, 932431, 784627, 906473, 855331, 1121987
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			The third term of A229265 is 200 and sigma(200) +  tau(200) + phi(200) = 465 + 12 + 80 = 557 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a, n; for n from 1 to q do a:=sigma(n)+tau(n)+phi(n);
    if isprime(a) then print(a); fi; od; end: P(10^6);
  • Mathematica
    Select[Table[DivisorSigma[0,n]+DivisorSigma[1,n]+EulerPhi[n],{n,10^6}],PrimeQ] (* Harvey P. Dale, Oct 03 2023 *)

A229265 Numbers k such that sigma(k) + tau(k) + phi(k) is a prime, where sigma(k) = A000203(k), tau(k) = A000005(k) and phi(k) = A000010(k).

Original entry on oeis.org

1, 8, 200, 512, 968, 1458, 3200, 4232, 5618, 5832, 6962, 10368, 16928, 26912, 36992, 40328, 53792, 61952, 84050, 101250, 110450, 140450, 147968, 220448, 247808, 249218, 253472, 257762, 279752, 282752, 320000, 336200, 344450, 359552, 361250, 445568, 472392, 512072
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			sigma(200) = 465, tau(200) = 12, phi(200) = 80 and 465 + 12 + 80 = 557 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local n; for n from 1 to q do
    if isprime(sigma(n)+tau(n)+phi(n)) then print(n); fi; od; end: P(10^6);

A272060 Numbers k such that sigma((k-1)/2) + tau((k-1)/2) is prime.

Original entry on oeis.org

3, 5, 17, 257, 325, 1025, 65537, 82945, 202501, 250001, 2829125, 7496645, 10240001, 13675205, 16000001, 27060805, 48469445, 71402501, 133448705, 150062501, 156250001, 172186885, 182250001, 343064485, 354117125, 453519617, 467943425, 1235663105
Offset: 1

Views

Author

Jaroslav Krizek, Apr 19 2016

Keywords

Comments

Numbers k such that A000203((k-1)/2) + A000005((k-1)/2) is a prime q.
Corresponding values of primes q are in A055813.
Prime terms are in A272061.
The first 5 known Fermat primes from A019434 are in this sequence.

Examples

			sigma((17-1)/2) + tau((17-1)/2) = sigma(8) + tau(8) = 15 + 4 = 19; 19 is prime, so 17 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [3..1000000] | IsPrime(NumberOfDivisors((n-1) div 2) + SumOfDivisors((n-1) div 2)) and (n-1) mod 2 eq 0];
    
  • Mathematica
    Select[Range[3, 10^7, 2], PrimeQ[DivisorSigma[1, #] + DivisorSigma[0, #]] &[(# - 1)/2] &] (* Michael De Vlieger, Apr 20 2016 *)
  • PARI
    isok(n) = isprime(sigma((n-1)/2) + numdiv((n-1)/2));
    lista(nn) = forstep (n=3, nn, 2, if (isok(n), print1(n, ", "))); \\ Michel Marcus, Apr 19 2016
    
  • PARI
    is(n)=my(f=factor(n\2)); n>2 && isprime(sigma(f)+numdiv(f)) && isprime(n) \\ Charles R Greathouse IV, Apr 29 2016

Formula

a(n) = 2*A064205(n) + 1.

A272061 Primes p such that sigma((p-1)/2) + tau((p-1)/2) is prime.

Original entry on oeis.org

3, 5, 17, 257, 65537, 453519617, 1372257937, 1927561217, 21320672257, 76001667857, 138388464037, 1216026685697, 2085136000001, 8503056000001, 30118144000001, 35427446793217, 37015056000001, 83037656250001, 87329473560577, 97850397828097, 222330465562501, 233952748524197
Offset: 1

Views

Author

Jaroslav Krizek, Apr 19 2016

Keywords

Comments

Primes p such that A007503((p-1)/2) is a prime q.
Corresponding values of primes q: 2, 5, 19, 263, 65551, 496922891, ...
Prime terms from A272060.
The first 5 known Fermat primes from A019434 are in this sequence.
Primes of the form 2*m+1 with m a term of A064205. - Michel Marcus, Apr 25 2016

Examples

			sigma((17-1)/2) + tau((17-1)/2) = sigma(8) + tau(8) = 15 + 4 = 19; 19 is prime, so 17 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [3..1000000] | IsPrime(n) and IsPrime(NumberOfDivisors((n-1) div 2) + SumOfDivisors((n-1) div 2)) and (n-1) mod 2 eq 0];
    
  • Maple
    with(numtheory): A272061:=n->`if`(isprime(n) and isprime(sigma((n-1)/2)+tau((n-1)/2)), n, NULL): seq(A272061(n), n=3..10^5); # Wesley Ivan Hurt, Apr 20 2016
  • Mathematica
    Select[Prime[Range[10000]],PrimeQ[DivisorSigma[1,(#-1)/2] + DivisorSigma[0,(#-1)/2]] & ] (* Robert Price, Apr 21 2016 *)
  • PARI
    isok(n) = isprime(sigma((n-1)/2) + numdiv((n-1)/2));
    lista(nn) = forprime (p=3, nn, if (isok(p), print1(p, ", "))); \\ Michel Marcus, Apr 19 2016
    
  • PARI
    is(n)=my(f=factor(n\2)); isprime(sigma(f)+numdiv(f)) && isprime(n) \\ Charles R Greathouse IV, Apr 28 2016

Extensions

a(7)-a(8) from Michel Marcus, Apr 24 2016
a(9) from Charles R Greathouse IV, Apr 29 2016
a(10) from Charles R Greathouse IV, Apr 29 2016
a(11)-a(20), using A064205 bfile, added by Michel Marcus, Nov 23 2022
a(21)-a(22) from Amiram Eldar, Dec 06 2022
Showing 1-8 of 8 results.