cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100545 Expansion of (7-2*x) / (1-3*x+x^2).

Original entry on oeis.org

7, 19, 50, 131, 343, 898, 2351, 6155, 16114, 42187, 110447, 289154, 757015, 1981891, 5188658, 13584083, 35563591, 93106690, 243756479, 638162747, 1670731762, 4374032539, 11451365855, 29980065026, 78488829223, 205486422643, 537970438706, 1408424893475, 3687304241719, 9653487831682, 25273159253327
Offset: 0

Views

Author

Creighton Dement, Dec 31 2004

Keywords

Comments

A Floretion integer sequence relating to Fibonacci numbers.
Inverse binomial transform of A013655; inversion of A097924.

Crossrefs

Programs

  • GAP
    List([0..30], n-> Fibonacci(2*n+4) +Lucas(1,-1,2*n+3)[2] ); # G. C. Greubel, Jan 17 2020
  • Magma
    [Fibonacci(2*n+4) +Lucas(2*n+3): n in [0..30]]; // G. C. Greubel, Jan 17 2020
    
  • Maple
    F := proc(n) combinat[fibonacci](n) ; end: A100545 := proc(n) 4*F(2*(n+1)) + F(2*n+1)+F(2*n+3) ; end: for n from 0 to 30 do printf("%d,",A100545(n)) ; od ; # R. J. Mathar, Oct 26 2006
  • Mathematica
    Table[Fibonacci[2*(n+2)] + LucasL[2*n+3], {n,0,30}] (* G. C. Greubel, Jan 17 2020 *)
  • PARI
    Vec((7-2*x)/(1-3*x+x^2) + O(x^30)) \\ Michel Marcus, Feb 11 2015
    
  • Sage
    [fibonacci(2*n+4) +lucas_number2(2*n+3,1,-1) for n in (0..30)] # G. C. Greubel, Jan 17 2020
    

Formula

a(n-1) = 4*Fibonacci(2*n) + Fibonacci(2*n-1) + Fibonacci(2*n+1).
a(n) + a(n+1) = A055849(n+2).
a(n) = 3*a(n-1) - a(n-2) with a(0)=7 and a(1)=19. - Philippe Deléham, Nov 16 2008
a(n) = (2^(-1-n)*((3-sqrt(5))^n*(-17+7*sqrt(5)) + (3+sqrt(5))^n*(17+7*sqrt(5)))) / sqrt(5). - Colin Barker, Oct 14 2015
From G. C. Greubel, Jan 17 2020: (Start)
a(n) = Fibonacci(2*n+4) + Lucas(2*n+3).
E.g.f.: 2*exp(3*t/2)*(cosh(sqrt(5)*t/2) + (4/sqrt(5))*sinh(sqrt(5)*t/2)). (End)

Extensions

Corrected and extended by T. D. Noe and R. J. Mathar, Oct 26 2006

A141751 Triangle, read by rows, where T(n,k) = [T(n-1,k-1)*T(n-1,k) + 1]/T(n-2,k-1) for 0=0 and T(n,0) = Fibonacci(2*n-1) for n>=1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 13, 13, 8, 4, 1, 34, 34, 21, 11, 5, 1, 89, 89, 55, 29, 14, 6, 1, 233, 233, 144, 76, 37, 17, 7, 1, 610, 610, 377, 199, 97, 45, 20, 8, 1, 1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1, 4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 04 2008

Keywords

Examples

			Generating rule.
Given nonzero elements W, X, Y, Z, relatively arranged like so:
.. W .....
.. X Y ...
.... Z ...
then Z = (X*Y + 1)/W.
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 5, 3, 1;
13, 13, 8, 4, 1;
34, 34, 21, 11, 5, 1;
89, 89, 55, 29, 14, 6, 1;
233, 233, 144, 76, 37, 17, 7, 1;
610, 610, 377, 199, 97, 45, 20, 8, 1;
1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1;
4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(n
    				
  • PARI
    T(n,k)=fibonacci(2*(n-k))*k+fibonacci(2*(n-k)-1)
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

T(n,k) = Fibonacci(2*(n-k)-1) + k*Fibonacci(2*(n-k)) for 0<=k<=n.

A102714 Expansion of (x+2) / ((x+1)*(x^2-3*x+1)).

Original entry on oeis.org

2, 5, 14, 36, 95, 248, 650, 1701, 4454, 11660, 30527, 79920, 209234, 547781, 1434110, 3754548, 9829535, 25734056, 67372634, 176383845, 461778902, 1208952860, 3165079679, 8286286176, 21693778850, 56795050373, 148691372270, 389279066436, 1019145827039
Offset: 0

Views

Author

Creighton Dement, Feb 06 2005

Keywords

Comments

A floretion-generated sequence relating Fibonacci numbers.
Floretion Algebra Multiplication Program, FAMP code: (a(n)) = 2dia[I]forseq[ + .5'i + .5'ii' + .5'ij' + .5'ik' ], 2dia[J]forseq = 2dia[K]forseq = A001654, mixforseq = A001519, tesforseq = A099016, vesforseq = A000004. Identity used: dia[I] + dia[J] + dia[K] + mix + tes = ves

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x+2)/((x+1)(x^2-3x+1)),{x,0,30}],x] (* or *) LinearRecurrence[{2,2,-1},{2,5,14},30] (* Harvey P. Dale, Apr 22 2012 *)
  • PARI
    a(n) = round((2^(-1-n)*((-1)^n*2^(1+n)+(9-5*sqrt(5))*(3-sqrt(5))^n+(3+sqrt(5))^n*(9+5*sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec((x+2)/((x+1)*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Oct 01 2016

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3), a(0) = 2, a(1) = 5, a(2) = 14.
a(n) + a(n+1) = A100545(n).
a(n) + 2*a(n+1) + a(n+2) = A055849(n+2).
a(n) + 2*A001654(n) - A099016(n+2) + 2*A001519(n) = 0.
a(n) = (2^(-1-n)*((-1)^n*2^(1+n)+(9-5*sqrt(5))*(3-sqrt(5))^n+(3+sqrt(5))^n*(9+5*sqrt(5))))/5. - Colin Barker, Oct 01 2016
a(n) = (-1)^n +9*A001906(n+1) -A001906(n) . - R. J. Mathar, Sep 11 2019

Extensions

Corrected by T. D. Noe, Nov 02 2006, Nov 07 2006
Showing 1-3 of 3 results.