cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A056069 Number of 4-element ordered antichains on an unlabeled n-element set; T_1-hypergraphs with 4 labeled nodes and n hyperedges.

Original entry on oeis.org

25, 454, 3818, 21420, 92805, 335152, 1055944, 2990020, 7767357, 18789070, 42797602, 92588216, 191542842, 381000192, 731941256, 1363109096, 2468549141, 4358716470, 7520830306, 12706161124, 21054530855, 34269633840, 54863015040, 86489873580, 134406530985
Offset: 4

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 26 2000

Keywords

Comments

T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node.

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Cf. A051112 for 4-element (unordered) antichains on a labeled n-element set, A056005.

Formula

a(n) = C(n + 15, 15) - 12*C(n + 11, 11) + 24*C(n + 9, 9) + 4*C(n + 8, 8) - 18*C(n + 7, 7) + 6*C(n + 6, 6) - 36*C(n + 5, 5) + 36*C(n + 4, 4) + 11*C(n + 3, 3) - 22*C(n + 2, 2) + 6*C(n + 1, 1).
Empirical G.f.: x^4*(6*x^10 -62*x^9 +271*x^8 -636*x^7 +800*x^6 -328*x^5 -495*x^4 +812*x^3 -446*x^2 +54*x +25)/(x-1)^16. [Colin Barker, May 29 2012]

A056071 Number of 6-element ordered antichains on an unlabeled n-element set; T_1-hypergraphs with 6 labeled nodes and n hyperedges.

Original entry on oeis.org

30, 8340, 780242, 29813578, 657271645, 10037038800, 117733967666, 1130702091428, 9273992351046, 66900184307860, 433616524985590, 2566055594813118, 14037125952339998, 71676448315103924, 344320192201127730, 1566076395413987110, 6779944255517707576
Offset: 4

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic, Jul 26 2000

Keywords

Comments

T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node.

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Cf. A051114 for 6-element (unordered) antichains on a labeled n-element set, A056005.

Formula

a(n)=C(n + 63, 63) - 30*C(n + 47, 47) + 120*C(n + 39, 39) + 60*C(n + 35, 35) + 60*C(n + 33, 33) - 12*C(n + 32, 32) - 345*C(n + 31, 31) - 720*C(n + 29, 29) + 810*C(n + 27, 27) + 120*C(n + 26, 26) + 480*C(n + 25, 25) + 360*C(n + 24, 24) - 480*C(n + 23, 23) - 720*C(n + 22, 22) - 240*C(n + 21, 21) - 540*C(n + 20, 20) + 1380*C(n + 19, 19) + 750*C(n + 18, 18) + 60*C(n + 17, 17) - 210*C(n + 16, 16) - 1535*C(n + 15, 15) - 1820*C(n + 14, 14) + 2250*C(n + 13, 13) + 1800*C(n + 12, 12) - 2820*C(n + 11, 11) + 300*C(n + 10, 10) + 2040*C(n + 9, 9) + 340*C(n + 8, 8) - 1815*C(n + 7, 7) + 510*C(n + 6, 6) - 1350*C(n + 5, 5) + 1350*C(n + 4, 4) + 274*C(n + 3, 3) - 548*C(n + 2, 2) + 120*C(n + 1, 1).

Extensions

More terms from Sean A. Irvine, Apr 14 2022

A056073 Number of 7-element ordered antichains on an unlabeled n-element set; T_1-hypergraphs with 7 labeled nodes and n hyperedges.

Original entry on oeis.org

20580, 9209340, 1113220168, 64271300556, 2302652531436, 59028678965286, 1179552813324360, 19421453010531722, 273692092058502488, 3392151018511583748, 37729265705269684476
Offset: 5

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic, Jul 26 2000

Keywords

Comments

T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node.

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

A051115 for 7-element (unordered) antichains on a labeled n-element set, A056005.

Formula

a(n)=C(n + 127, 127) - 42*C(n + 95, 95) + 210*C(n + 79, 79) + 140*C(n + 71, 71) + 210*C(n + 67, 67) - 84*C(n + 65, 65) + 14*C(n + 64, 64) - 819*C(n + 63, 63) - 2520*C(n + 59, 59) + 2730*C(n + 55, 55) + 840*C(n + 53, 53) + 840*C(n + 51, 51) - 420*C(n + 50, 50) + 2940*C(n + 49, 49) + 630*C(n + 47, 47) - 5040*C(n + 45, 45) + 840*C(n + 44, 44) - 1260*C(n + 43, 43) +
1680*C(n + 42, 42) - 9660*C(n + 41, 41) + 1260*C(n + 40, 40) + 3360*C(n + 39, 39) - 7560*C(n + 38, 38) + 11130*C(n + 37, 37) + 5880*C(n + 36, 36) + 9240*C(n + 35, 35) + 2982*C(n + 34, 34) - 6300*C(n + 33, 33) - 8652*C(n + 32, 32) - 9905*C(n + 31, 31) - 8400*C(n + 30, 30) - 8540*C(n + 29, 29) + 13860*C(n + 28, 28) + 14490*C(n + 27, 27) - 5040*C(n + 26, 26) + 10500*C(n + 25, 25) +
10080*C(n + 24, 24) - 8120*C(n + 23, 23) - 15050*C(n + 22, 22) - 5040*C(n + 21, 21) - 11340*C(n + 20, 20) + 20580*C(n + 19, 19) + 15750*C(n + 18, 18) - 1540*C(n + 17, 17) - 5810*C(n + 16, 16) - 16485*C(n + 15, 15) - 21420*C(n + 14, 14) + 26250*C(n + 13, 13) + 21000*C(n + 12, 12) - 29820*C(n + 11, 11) + 3500*C(n + 10, 10) + 17640*C(n + 9, 9) + 2940*C(n + 8, 8) - 16016*C(n + 7, 7) + 4410*C(n + 6, 6) - 9744*C(n + 5, 5) + 9744*C(n + 4, 4) + 1764*C(n + 3, 3) - 3528*C(n + 2, 2) + 720*C(n + 1, 1).

A056078 Number of proper T_1-hypergraphs with 3 labeled nodes and n hyperedges.

Original entry on oeis.org

0, 0, 2, 15, 54, 141, 306, 588, 1036, 1710, 2682, 4037, 5874, 8307, 11466, 15498, 20568, 26860, 34578, 43947, 55214, 68649, 84546, 103224, 125028, 150330, 179530, 213057, 251370, 294959, 344346, 400086, 462768, 533016, 611490, 698887, 795942, 903429, 1022162
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 26 2000

Keywords

Comments

Also number of 3 X 3 matrices with nonnegative integer entries with zero main diagonal and without zero rows or columns, such that sum of all entries is n. - Vladeta Jovovic, Sep 06 2006
A T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair (u,v) of distinct nodes has a hyperedge containing u but not v. A proper hypergraph is a hypergraph without empty hyperedges or hyperedges containing all nodes. - Vladeta Jovovic, Sep 06 2006

Examples

			There are 15 proper T_1-hypergraphs with 3 nodes and 4 hyperedges: {{3},{3},{2},{1}}, {{3},{2},{2},{1}}, {{3},{2},{2,3},{1}}, {{3},{2},{1},{1}}, {{3},{2},{1},{1,3}}, {{3},{2},{1},{1,2}}, {{3},{2},{1,3},{1,2}}, {{3},{2,3},{1},{1,2}}, {{3},{2,3},{1,3},{1,2}}, {{2},{2,3},{1},{1,3}}, {{2},{2,3},{1,3},{1,2}}, {{2,3},{2,3},{1,3},{1,2}}, {{2,3},{1},{1,3},{1,2}}, {{2,3},{1,3},{1,3},{1,2}}, {{2,3},{1,3},{1,2},{1,2}}.
		

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Programs

  • Magma
    [(n^4 + 20*n^3 + 35*n^2 - 140*n + 84)*n/120: n in [0..25]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    Table[(n^4 + 20*n^3 + 35*n^2 - 140*n + 84)*n/120, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=0,25, print1((n^4 + 20*n^3 + 35*n^2 - 140*n + 84)*n/120, ", ")) \\ G. C. Greubel, Oct 07 2017
    

Formula

a(n) = C(n+5,5) -6*C(n+3,3) +6*C(n+2,2) +3*C(n+1,1) -6*C(n,0).
a(n+1) = ( n^4 +20*n^3 +35*n^2 -140*n +84 )*n/120.
From Colin Barker, Jul 11 2013: (Start)
a(n) = (-240+394*n-135*n^2-35*n^3+15*n^4+n^5)/120.
G.f.: x^3 *(x-2) *(2*x^2-2*x-1) / (x-1)^6. (End)

Extensions

More terms from Colin Barker, Jul 11 2013

A056070 Number of 5-element ordered antichains on an unlabeled n-element set; T_1-hypergraphs with 5 labeled nodes and n hyperedges.

Original entry on oeis.org

30, 2206, 56242, 766198, 7056249, 49662920, 286860862, 1422695104, 6246302316, 24810260818, 90593318410, 307833736038, 982717917851, 2969842897554, 8548862507642, 23559234462890, 62421788882924, 159585012804848, 394875247007432, 948171537489016
Offset: 4

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic, Jul 26 2000

Keywords

Comments

T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node.

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Cf. A051113 for 5-element (unordered) antichains on a labeled n-element set, A056005.

Formula

a(n)=C(n + 31, 31) - 20*C(n + 23, 23) + 60*C(n + 19, 19) + 20*C(n + 17, 17) + 10*C(n + 16, 16) - 110*C(n + 15, 15) - 120*C(n + 14, 14) + 150*C(n + 13, 13) + 120*C(n + 12, 12) - 240*C(n + 11, 11) + 20*C(n + 10, 10) + 240*C(n + 9, 9) + 40*C(n + 8, 8) - 205*C(n + 7, 7) + 60*C(n + 6, 6) - 210*C(n + 5, 5) + 210*C(n + 4, 4) + 50*C(n + 3, 3) - 100*C(n + 2, 2) + 24*C(n + 1, 1).

Extensions

More terms from Sean A. Irvine, Apr 14 2022

A056163 Number of ordered antichains on an unlabeled n-set; labeled T_1-hypergraphs with n hyperedges.

Original entry on oeis.org

2, 3, 5, 11, 120, 191297
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 31 2000

Keywords

Comments

A T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node.

Examples

			a(1)=1+2=3; a(2)=1+3+1=5; a(3)=1+4+4+2=11; a(4)=1+5+10+19+25+30+30=120; a(5)=1+6+20+90+454+2206+8340+20580+38640+60480+60480=191297.
There are 11 ordered antichains on an unlabeled 3-set: 0, (0), ({1}), ({1,2}), ({1,2,3}), ({1},{2}), ({1},{2,3}), ({2,3},{1}), ({1,2},{1,3}), ({1},{2},{3}), ({1,2},{1,3},{2,3}).
		

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Cf. A000372 for (unordered) antichains on a labeled n-set, A056005, A056069-A056071, A056073, A056046-A056049, A056052, A056101, A056104, A051112-A051118.

Formula

a(n)=Sum_{k=0..C(n, floor(n/2))}b(k, n) where b(k, n) is the number of k-element ordered antichains on an unlabeled n-set.

A056778 Number of 3-element antichains on an unlabeled n-element set; equivalence classes of monotone Boolean functions of n variables with 3 mincuts under action of symmetric group S_n.

Original entry on oeis.org

0, 0, 0, 2, 9, 30, 84, 202, 437, 872, 1627, 2874, 4853, 7882, 12383, 18902, 28130, 40934, 58391, 81812, 112790, 153238, 205430, 272054, 356270, 461754, 592774, 754252, 951831, 1191956, 1481962, 1830144, 2245867, 2739658, 3323305, 4009972, 4814323, 5752624, 6842893
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Aug 17 2000

Keywords

Examples

			There are 30 3-element antichains on an unlabeled 5-element set: {{5},{4},{3}}, {{5},{4},{2,3}}, {{5},{4},{1,2,3}}, {{5},{3,4},{2,4}}, {{5},{3,4},{1,2}}, {{5},{3,4},{1,2,4}}, {{5},{2,3,4},{1,3,4}}, {{4,5},{3,5},{3,4}}, {{4,5},{3,5},{2,5}}, {{4,5},{3,5},{2,4}},{{4,5},{3,5},{2,3,4}}, {{4,5},{3,5},{1,2}}, {{4,5},{3,5},{1,2,5}}, {{4,5},{3,5},{1,2,4}}, {{4,5},{3,5},{1,2,3,4}}, {{4,5},{2,3},{1,3,5}}, {{4,5},{2,3,5},{2,3,4}}, {{4,5},{2,3,5},{1,3,5}}, {{4,5},{2,3,5},{1,3,4}}, {{4,5},{2,3,5},{1,2,3}}, {{4,5},{2,3,5},{1,2,3,4}}, {{4,5},{1,2,3,5},{1,2,3,4}}, {{3,4,5},{2,4,5},{2,3,5}}, {{3,4,5},{2,4,5},{1,4,5}}, {{3,4,5},{2,4,5},{1,3,5}}, {{3,4,5},{2,4,5},{1,2,3}}, {{3,4,5},{2,4,5},{1,2,3,5}}, {{3,4,5},{1,2,5},{1,2,3,4}}, {{3,4,5},{1,2,4,5},{1,2,3,5}}, {{2,3,4,5},{1,3,4,5},{1,2,4,5}}.
		

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Programs

  • PARI
    seq(n)=Vec((2 + x + 2*x^2 + 4*x^3 - x^5 - 2*x^6)/((1 - x)^8*(1 + x)^2*(1 + x + x^2)^2) + O(x^(n-2)), -(n+1)) \\ Andrew Howroyd, Feb 02 2024

Formula

G.f.: x^3*(2 + x + 2*x^2 + 4*x^3 - x^5 - 2*x^6)/((1 - x)^8*(1 + x)^2*(1 + x + x^2)^2). - Andrew Howroyd, Feb 02 2024

Extensions

a(8) onwards from Andrew Howroyd, Feb 02 2024

A056782 Number of 3-element proper antichains (i.e., antichains such that every two members have nonempty intersection) on an unlabeled n-element set.

Original entry on oeis.org

0, 0, 0, 1, 5, 18, 53, 135, 305, 633, 1220, 2217, 3834, 6359, 10172, 15776, 23807, 35075, 50585, 71576, 99551, 136332, 184084, 245384, 323260, 421256, 543484, 694709, 880393, 1106798, 1381049, 1711231, 2106469, 2577049, 3134488, 3791677, 4562974, 5464339, 6513448
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Aug 18 2000

Keywords

Crossrefs

Cf. A001206, A047707, A051303 (labeled case), A055484, A055485, A056005.

Programs

  • PARI
    seq(n)=Vec((1 + x + 2*x^2 + 3*x^3 + 3*x^4 - x^5 - 3*x^7)/((1 - x)^8*(1 + x)^2*(1 + x + x^2)^2) + O(x^(n-2)), -(n+1)) \\ Andrew Howroyd, Feb 02 2024

Formula

G.f.: x^3*(1 + x + 2*x^2 + 3*x^3 + 3*x^4 - x^5 - 3*x^7)/((1 - x)^8*(1 + x)^2*(1 + x + x^2)^2). - Andrew Howroyd, Feb 02 2024

Extensions

a(8) onwards from Andrew Howroyd, Feb 02 2024

A056164 Number of ordered antichain covers of an unlabeled n-set; labeled T_1-hypergraphs (without empty hyperedges) with n hyperedges.

Original entry on oeis.org

1, 2, 6, 109, 191177
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 31 2000

Keywords

Comments

A T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node.

Examples

			There are 6 ordered antichain covers on an unlabeled 3-set: ({1,2,3}), ({1},{2,3}), ({2,3},{1}), ({1,2},{1,3}), ({1},{2},{3}), ({1,2},{1,3},{2,3}).
a(3)=1+3+2=6; a(4)=1+6+17+25+30+30=109; a(5)=1+10+71+429+2176+8310+20580+38640+60480+60480=191177.
		

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Formula

a(n)=Sum_{k=1..C(n, floor(n/2))}b(k, n) where b(k, n) is the number of k-element ordered antichains covers of an unlabeled n-set.
Showing 1-9 of 9 results.