cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A038507 a(n) = n! + 1.

Original entry on oeis.org

2, 2, 3, 7, 25, 121, 721, 5041, 40321, 362881, 3628801, 39916801, 479001601, 6227020801, 87178291201, 1307674368001, 20922789888001, 355687428096001, 6402373705728001, 121645100408832001, 2432902008176640001, 51090942171709440001, 1124000727777607680001, 25852016738884976640001
Offset: 0

Views

Author

Keywords

Comments

"For n = 4, 5 and 7, n!+1 is a square. Sierpiński asked if there are any other values of n with this property." p. 82 of Ogilvy and Anderson (see A146968).
Number of {12,12*,1*2,21*,2*1}-avoiding signed permutations in the hyperoctahedral group.
After Wilson's Theorem: if (n+1) is prime then (n+1) is the smallest prime factor of a(n). - Karl-Heinz Hofmann, Aug 21 2024

Examples

			G.f. = 2 + 2*x + 3*x^2 + 7*x^3 + 25*x^4 + 121*x^5 + 721*x^6 + 5041*x^7 + ...
		

References

  • C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, p. 82.
  • Wacław Sierpiński, On some unsolved problems of arithmetics, Scripta Mathematica, vol. 25 (1960), p. 125.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = n * (a(n-1) - 1) + 1. - Reinhard Zumkeller, Mar 20 2013
0 = a(n)*(a(n+1) - 5*a(n+2) + 5*a(n+3) - a(n+4)) + a(n+1)*(a(n+1) + a(n+2) - 6*a(n+3) + 2*a(n+4)) + a(n+2)*(3*a(n+2) - a(n+3) - a(n+4)) + a(n+3)*(a(n+3)) if n>=0. - Michael Somos, Apr 23 2014
From Ilya Gutkovskiy, Jan 20 2017: (Start)
E.g.f: exp(x) + 1/(1 - x).
Sum_{n>=0} 1/a(n) = A217702. (End)

Extensions

Additional comments from Jason Earls, Apr 01 2001
Numericana.com URL fixed by Gerard P. Michon, Mar 30 2010
Entry revised by N. J. A. Sloane, Jun 10 2012

A002583 Largest prime factor of n! + 1.

Original entry on oeis.org

2, 2, 3, 7, 5, 11, 103, 71, 661, 269, 329891, 39916801, 2834329, 75024347, 3790360487, 46271341, 1059511, 1000357, 123610951, 1713311273363831, 117876683047, 2703875815783, 93799610095769647, 148139754736864591, 765041185860961084291, 38681321803817920159601
Offset: 0

Views

Author

Keywords

Comments

Theorem: For any N, there is a prime > N. Proof: Consider any prime factor of N!+1.
Cf. Wilson's theorem (1770): p | (p-1)! + 1 iff p is a prime.
If n is in A002981, then a(n) = n!+1. - Chai Wah Wu, Jul 15 2019

Examples

			(0!+1)=[2], (1!+1)=[2], (2!+1)=[3], (3!+1)=[7], (4!+1)=25=5*[5], (5!+1)=121=11*[11], (6!+1)=721=7*[103], (7!+1)=5041=71*[71], etc. - Mitch Cervinka (puritan(AT)toast.net), May 11 2009
		

References

  • M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(Factorial(n)+1)): n in [0..30]]; // Vincenzo Librandi, Feb 14 2020
  • Mathematica
    PrimeFactors[n_]:=Flatten[Table[ #[[1]],{1}]&/@FactorInteger[n]]; Table[PrimeFactors[n!+1][[ -1]],{n,0,35}] ..and/or.. Table[FactorInteger[n!+1,FactorComplete->True][[ -1,1]],{n,0,35}] (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
    FactorInteger[#][[-1,1]]&/@(Range[0,30]!+1) (* Harvey P. Dale, Sep 04 2017 *)
  • PARI
    a(n)=my(f=factor(n!+1)[,1]);f[#f] \\ Charles R Greathouse IV, Dec 05 2012
    

Formula

Erdős & Stewart show that a(n) > n + (1-o(1))log n/log log n and lim sup a(n)/n > 2. - Charles R Greathouse IV, Dec 05 2012
Lai proves that lim sup a(n)/n > 7.238. - Charles R Greathouse IV, Jun 22 2021

Extensions

More terms from Robert G. Wilson v, Aug 01 2000
Corrected by Jud McCranie, Jan 03 2001
Showing 1-2 of 2 results.