cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A006972 Lucas-Carmichael numbers: squarefree composite numbers k such that p | k => p+1 | k+1.

Original entry on oeis.org

399, 935, 2015, 2915, 4991, 5719, 7055, 8855, 12719, 18095, 20705, 20999, 22847, 29315, 31535, 46079, 51359, 60059, 63503, 67199, 73535, 76751, 80189, 81719, 88559, 90287, 104663, 117215, 120581, 147455, 152279, 155819, 162687, 191807, 194327, 196559, 214199
Offset: 1

Views

Author

Keywords

Comments

Wright proves that this sequence is infinite (Main Theorem 2). - Charles R Greathouse IV, Nov 03 2015
Conjecture: if k = p*q*r, p = a*d - 1, q = b*d - 1, r = c*d - 1 are distinct odd primes, with d = gcd(p + 1, q + 1, r + 1) and a*b*c*d divides k + 1, then k is a Lucas-Carmichael number. - Davide Rotondo, Dec 23 2020
A composite k is a Lucas-Carmichael number if and only if k | A322702(k+1). - Thomas Ordowski, May 06 2021

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 399, p. 89, Ellipses, Paris 2008.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Intersection of A024556 and A056729.
Cf. A216925, A216926, A216927, A217002, A217003, A217091 (terms having 3, 4, 5, 6, 7 and 8 factors).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local k; for k from 1+
         `if`(n=1, 3, a(n-1)) while isprime(k) or not issqrfree(k)
           or add(irem(k+1,i+1), i=factorset(k))>0 do od; k
        end:
    seq(a(n), n=1..15);  # Alois P. Heinz, Apr 05 2018
  • Mathematica
    Select[ Range[ 2, 10^6 ], !PrimeQ[ # ] && Union[ Transpose[ FactorInteger[ # ] ][ [ 2 ] ] ] == {1} && Union[ Mod[ # + 1, Transpose[ FactorInteger[ # ] ][ [ 1 ] ] + 1 ] ] == {0} & ]
  • PARI
    is(n)=my(f=factor(n));for(i=1,#f[,1],if((n+1)%(f[i,1]+1) || f[i,2]>1, return(0)));#f[,1]>1 \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    lucas_carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=min(sqrtint(B+1)-1, sqrtnint(B\m, k))); if(lo > hi, return(list)); if(k==1, lo=max(lo, ceil(A/m)); my(t=lift(-1/Mod(m,l))); while(t < lo, t += l); forstep(p=t, hi, l, if(isprime(p), my(n=m*p); if((n+1)%(p+1) == 0, listput(list, n)))), forprime(p=lo, hi, if(gcd(m, p+1) == 1, list=concat(list, f(m*p, lcm(l, p+1), p+1, k-1))))); list); f(1, 1, 3, k);
    upto(n) = my(list=List()); for(k=3, oo, if(vecprod(primes(k+1))\2 > n, break); list=concat(list, lucas_carmichael(1, n, k))); vecsort(Vec(list)); \\ Daniel Suteu, Dec 01 2023

A080062 Composite numbers n such that for all primes p dividing n, p-1 divides n-1.

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 32, 45, 49, 64, 81, 121, 125, 128, 169, 225, 243, 256, 289, 325, 343, 361, 405, 512, 529, 561, 625, 637, 729, 841, 891, 961, 1024, 1105, 1125, 1225, 1331, 1369, 1377, 1681, 1729, 1849, 2025, 2048, 2187, 2197, 2209, 2401, 2465, 2809, 2821
Offset: 1

Views

Author

Robert G. Wilson v, Jan 23 2003

Keywords

Comments

The subsequence of squarefree terms gives the Carmichael numbers (A002997); cf. Korselt's criterion. - Joerg Arndt, May 17 2016

Crossrefs

Cf. A002997 (Carmichael numbers).

Programs

  • Mathematica
    Select[ Range[2, 10^4], !PrimeQ[ # ] && Union[ Mod[ # - 1, Transpose[ FactorInteger[ # ]][[1]] - 1]] == {0} &]
  • PARI
    is080062(n)=if(isprime(n),return(0)); my(f=factor(n)[, 1]); for(j=1, #f, if((n-1)%(f[j]-1), return(0))); 1; \\ Joerg Arndt, May 17 2016

A304291 Composite numbers k such that for all primes p dividing k, p-1 divides k-1 and p+1 divides k+1.

Original entry on oeis.org

8, 27, 32, 125, 128, 243, 343, 512, 1331, 2048, 2187, 2197, 3125, 4913, 6859, 8192, 12167, 16807, 19683, 24389, 29791, 32768, 50653, 68921, 74431, 78125, 79507, 103823, 131072, 148877, 161051, 177147, 205379, 226981, 300763, 357911, 371293, 389017, 493039, 524288
Offset: 1

Views

Author

Paolo P. Lava, May 17 2018

Keywords

Comments

Intersection of A080062 and A056729.
Mainly odd powers of a prime: A056824 is a subset of this sequence.
If the additional limitations p-2|n-2 and p+2|n+2 should be added, only 243, 19683, 78125, 1594323 would be terms of the sequence for n <= 10^7.
Terms that are not perfect powers are 31*7^4, 31^3*7^4, 71*11^6, .... - Altug Alkan, May 17 2018
It appears that this is the intersection of A002808 and A171561. - Michel Marcus, May 19 2018
From Robert Israel, May 25 2018: (Start)
If i is odd and 4|j, then 31^i*7^j is a member.
If i is odd and 6|j, then 71^i*11^j is a member.
If i is odd and 12|j, then 17^i*5^j is a member.
If i is odd and 36|j, then 53^i*5^j is a member.
If i == 9 (mod 18) and 6|j, then 13^i*37^j is a member.
If i == 9 (mod 18) and 12|j, then 29^i*53^j is a member.
If i == 18 (mod 36), j == 3 (mod 6) and k == 2 (mod 4), then 5^i*17^j*53^k is a member.
(End)
Composite numbers k such that for all primes p dividing k, p+1 divides k-1 and p-1 divides k+1 are the union of 2^2j and 3^2j, with j>0. - Paolo P. Lava, May 16 2019

Examples

			Prime factors of 74431 are 7 and 31 and (74431-1)/(7-1) = 12405, (74431-1)/(31-1) = 2481, (74431+1)/(7+1) = 9304, (74431+1)/(31+1) = 2326.
		

Crossrefs

Programs

  • Magma
    sol:=[]; m:=1; p:=[]; for u in [1..600000] do if not IsPrime(u) then p:=PrimeDivisors(u);  s:=0; for i in [1..#p] do if IsIntegral((u-1)/(p[i]-1)) and  IsIntegral((u+1)/(p[i]+1)) then  s:=s+1; end if; if s eq #p then sol[m]:=u; m:=m+1; end if; end for; end if; end for; sol; // Marius A. Burtea, May 16 2019
  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n,ok;
    for n from 2 to q do if not isprime(n) then a:=factorset(n); ok:=1;
    for k from 1 to nops(a) do if frac((n-1)/(a[k]-1))>0 or frac((n+1)/(a[k]+1))>0 then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: P(10^6);
  • Mathematica
    Select[Range[4, 2^19], Function[k, And[CompositeQ@ k, AllTrue[FactorInteger[k][[All, 1]], And[Mod[k - 1, # - 1] == 0, Mod[k + 1, # + 1] == 0] &]]]] (* Michael De Vlieger, May 22 2018 *)
  • PARI
    lista(nn) = {forcomposite(c=1, nn, my(f = factor(c)); ok = 1; for (k=1, #f~, my(p = f[k,1]); if (((c-1) % (p-1)) || ((c+1) % (p+1)), ok = 0; break);); if (ok, print1(c, ", ")););} \\ Michel Marcus, May 19 2018
    

A079543 Numbers k such that k has at least two distinct prime factors and if a prime p divides k then (p-1) | (k-1) and (p+1) | (k+1).

Original entry on oeis.org

74431, 71528191, 125780831, 178708831, 4150390625, 68738591551, 171739186591, 429079903231, 634061169071
Offset: 1

Views

Author

Don Reble, Jan 22 2003

Keywords

Examples

			a(1) = 74431 = 7^4 * 31 because 6 and 30 divide 74430 and 8 and 32 divide 74432.
		

Crossrefs

Intersection of A056729 and A080062, minus A001597.

Programs

  • Mathematica
    Do[ f = Transpose[ FactorInteger[n]][[1]]; If[ Length[f] > 1 && Union[ Mod[n - 1, f - 1]] == {0} && Union[ Mod[n + 1, f + 1]] == {0}, Print[n]], {n, 6, 10^10}]

Extensions

a(6)-a(7) from Donovan Johnson, Apr 09 2010
a(8)-a(9) from Donovan Johnson, Jan 21 2013

A227348 Nonsquarefree integers m such that, for prime p, if p^k | m then 1+p^k | 1+m.

Original entry on oeis.org

26999, 122499, 193599, 599975, 2206775, 2620175, 3501575, 4798079, 8278599, 11631059, 14242175, 16956575, 17578799, 19048799, 49061375, 55504175, 57354725, 70963775, 75271559, 107499699, 114930639, 153536525, 165887189, 202729175, 241430399, 248688719, 257552735, 258969887, 275089919
Offset: 1

Views

Author

Emmanuel Vantieghem, Jul 08 2013

Keywords

Comments

The sequence is part of A056729.
All members are odd.

Examples

			26999 = 49*19*29 is in the list because 27000 is divisible by 8,50,20 and 30;
193599 = 9*49*439 is in the list because 193600 is divisible by 4,10,8, 50,440.
		

Crossrefs

Cf. A056729.

Programs

  • Mathematica
    PPDivs[m_Integer]:=Module[{f=FactorInteger[m]},Flatten[Table[First[f[[i]]]^Range[Last[f[[i]]]],{i,1,Length[f]}]]]; Select[Select[ Range[1000000], !SquareFreeQ[#]&], Union[ Mod[#+1, 1+PPDivs[#] ] ]== {0} &]
Showing 1-5 of 5 results.