cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A056797 Numbers k such that 9*10^k+1 is prime.

Original entry on oeis.org

3, 4, 5, 9, 22, 27, 36, 57, 62, 78, 201, 537, 696, 790, 905, 1038, 66886, 70500, 91836, 100613, 127240, 380734, 583696, 719055, 823037, 862868
Offset: 1

Views

Author

Robert G. Wilson v, Aug 22 2005

Keywords

Comments

a(22) > 2*10^5. - Robert Price, Jan 21 2015

Examples

			For k=9 we have (9*(10^9))+1 = 9000000001, which is prime.
		

Crossrefs

Cf. A056806 (4*10^k+1 is prime), A100997.

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(9*10^n+1)]; // Vincenzo Librandi, May 25 2015
    
  • Mathematica
    Do[ If[ PrimeQ[9*10^n + 1], Print[n]], {n, 0, 10000}]
  • PARI
    is(n)=ispseudoprime(9*10^n+1) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = A100997(n) + 1.

Extensions

a(18)-a(19) from Kamada data by Robert Price, Dec 14 2010
a(20) from Predrag Kurtovic, Sep 23 2013
a(21) from Robert Price, Jan 21 2015
a(22)-a(23) from Kamada data by Mohammed Yaseen, Jul 20 2021
a(24) from Predrag Kurtovic, Apr 18 2024
a(25)-a(26) from Predrag Kurtovic, Apr 22 2024

A101397 Numbers k such that 4*10^k+3 is prime.

Original entry on oeis.org

0, 1, 3, 7, 10, 40, 419, 449, 1737, 2245, 3131, 3813, 5345, 5659, 5681, 8410, 9097, 11293, 21061
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Jan 15 2005

Keywords

Comments

See Kamada link for search limit and prime vs. PRP status.
a(20) > 2*10^5. - Robert Price, Jul 17 2015

Examples

			n = 1, 3, 7, 10 are members since 43, 4003, 40000003 and 40000000003 are prime numbers.
		

Crossrefs

Programs

Formula

a(n) = A101713(n-1) + 1.

Extensions

a(18)-a(19) from Kamada data by Robert Price, Dec 10 2010

A177506 Primes of the form 4*10^n+1.

Original entry on oeis.org

5, 41, 401, 4001, 40000000000001
Offset: 1

Views

Author

Vincenzo Librandi, Dec 11 2010

Keywords

Crossrefs

Cf. A056806.

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is 4*10^n+1];
  • Mathematica
    Select[Table[4 10^n + 1, {n, 0, 500}], PrimeQ] (* Vincenzo Librandi Jan 02 2014 *)

A101394 Numbers k such that 4*10^k+9 is prime.

Original entry on oeis.org

0, 2, 4, 5, 8, 9, 28, 191, 196, 2038, 34414, 39266, 50579, 94286, 108412, 130480, 178091, 185355
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Jan 15 2005

Keywords

Comments

a(19) > 2*10^5. - Robert Price, May 24 2015

Examples

			n = 2, 4, 5, 8, 9 are members since 409, 40009, 400009, 400000009 and 4000000009 are all prime.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[4*10^n + 9], Print[n]], {n, 0, 10000}]
  • PARI
    is(n)=ispseudoprime(4*10^n+9) \\ Charles R Greathouse IV, Jun 12 2017

Formula

a(n) = A101715(n-1) + 1.

Extensions

a(10)=2038 from Joao da Silva (zxawyh66(AT)yahoo.com), Sep 30 2005
a(11)-a(12) from Kamada data by Robert Price, Dec 13 2010
Edited by Ray Chandler, Dec 23 2010
a(13)-a(18) from Robert Price, May 24 2015

A101395 Numbers k such that 4*10^k+7 is prime.

Original entry on oeis.org

0, 1, 3, 9, 39, 2323
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Jan 15 2005

Keywords

Comments

No further terms < 50000.
a(7) > 2*10^5. - Robert Price May 16 2015

Examples

			n = 1, 3, 9 are members since 47, 4007 and 4000000007 are primes.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[4*10^n + 7], Print[n]], {n, 0, 10000}]
  • PARI
    is(n)=ispseudoprime(4*10^n+7) \\ Charles R Greathouse IV, Jun 12 2017

Formula

a(n) = A101714(n-1) + 1.

A101712 Indices of primes in sequence defined by A(0) = 41, A(n) = 10*A(n-1) - 9 for n > 0.

Original entry on oeis.org

0, 1, 2, 12, 228, 241, 308, 956, 1472, 1493, 3181, 3726, 4176, 23209, 25718, 32834, 36989, 103957
Offset: 1

Views

Author

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 14 2004

Keywords

Comments

Numbers n such that 40*10^n + 1 is prime.
Numbers n such that digit 4 followed by n >= 0 occurrences of digit 0 followed by digit 1 is prime.

Examples

			4001 is prime, hence 2 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 1500], PrimeQ[4*10^# + 1] &] (* Robert Price, Mar 19 2015 *)
  • PARI
    a=41;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-9)
    
  • PARI
    for(n=0,1500,if(isprime(40*10^n+1),print1(n,",")))

Formula

a(n) = A056806(n+1) - 1.

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
Added missing term a(16)=32834 by Robert Price, Mar 19 2015

A109713 Numbers n such that 99 * 10^n + 1 is prime.

Original entry on oeis.org

1, 2, 4, 8, 16, 20, 24, 72, 200, 359, 454, 624, 1054, 2060, 6301, 8083, 8407, 13159, 65059, 74957
Offset: 1

Views

Author

Jason Earls, Aug 08 2005

Keywords

Comments

Terms < 21000 have been certified. Primality proof for 13159: PFGW Version 20041001.Win_Stable (v1.2 RC1b) [FFT v23.8] Primality testing 99*10^13159+1 [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 17 Calling Brillhart-Lehmer-Selfridge with factored part 69.89% 99*10^13159+1 is prime! (29.5646s+0.0028s) [Comment edited by N. J. A. Sloane, Jan 28 2025]

Examples

			For n=8 we have 99*10^8+1 = 9900000001, which is prime.
		

Crossrefs

Programs

Extensions

Edited by N. J. A. Sloane at the suggestion of Herman Jamke, Jan 13 2008
a(19)-a(20) from Kamada data by Tyler Busby, Apr 16 2024

A109800 Numbers n such that 55*10^n + 1 is prime.

Original entry on oeis.org

2, 3, 7, 9, 33, 61, 93, 112, 284, 615, 1293, 2558, 2925, 5961, 6454, 7960, 17521, 40838
Offset: 1

Views

Author

Jason Earls, Aug 15 2005

Keywords

Comments

All values proved prime. No more up to 25000. Primality proof for the largest: PFGW Version 20041001.Win_Stable (v1.2 RC1b) [FFT v23.8] Primality testing 55*10^17521+1 [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 3 Calling Brillhart-Lehmer-Selfridge with factored part 69.89% 55*10^17521+1 is prime! (48.1892s+0.1481s)

Crossrefs

Programs

Extensions

a(18) from Kamada data by Tyler Busby, Apr 24 2024

A171612 Integers n such that (25*10^n)+1 is prime.

Original entry on oeis.org

1, 8, 255, 320, 609, 688, 1436, 3271, 3921, 6520, 19604, 38348, 63531
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Dec 13 2009

Keywords

Comments

No others less than 20000.
See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "25001".

Examples

			For n=8 we have (25*10^8)+1 = 25*100000000+1 = 2500000000+1 = 2500000001, which is prime.
		

Crossrefs

Extensions

Edited by Ray Chandler, Dec 23 2010
a(12)-a(13) from Kamada data by Tyler Busby, May 03 2024

A294396 Numbers k such that 12*10^k + 1 is prime.

Original entry on oeis.org

0, 2, 38, 80, 9230, 25598, 39500
Offset: 1

Views

Author

Patrick A. Thomas, Feb 12 2018

Keywords

Comments

k must be even since 12*10^k + 1 is divisible by 11 if k is odd. - Robert G. Wilson v, Feb 12 2018
a(7) > 27440. - Robert G. Wilson v, Feb 17 2018
a(8) > 10^5. - Jeppe Stig Nielsen, Jan 31 2023

Examples

			13 and 1201 are prime, so 0 and 2 are the initial values.
		

Crossrefs

Programs

  • Mathematica
    ParallelMap[ If[ PrimeQ[12*10^# +1], #, Nothing] &, 2 + 6Range@ 4500] (* Robert G. Wilson v, Feb 13 2018 *)
  • PARI
    isok(k) = isprime(12*10^k + 1); \\ Altug Alkan, Mar 04 2018

Extensions

a(5) from Robert G. Wilson v, Feb 12 2018
a(6) from Robert G. Wilson v, Feb 13 2018
a(7) from Jeppe Stig Nielsen, Jan 28 2023
Showing 1-10 of 10 results.