A056797
Numbers k such that 9*10^k+1 is prime.
Original entry on oeis.org
3, 4, 5, 9, 22, 27, 36, 57, 62, 78, 201, 537, 696, 790, 905, 1038, 66886, 70500, 91836, 100613, 127240, 380734, 583696, 719055, 823037, 862868
Offset: 1
For k=9 we have (9*(10^9))+1 = 9000000001, which is prime.
A101397
Numbers k such that 4*10^k+3 is prime.
Original entry on oeis.org
0, 1, 3, 7, 10, 40, 419, 449, 1737, 2245, 3131, 3813, 5345, 5659, 5681, 8410, 9097, 11293, 21061
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Jan 15 2005
n = 1, 3, 7, 10 are members since 43, 4003, 40000003 and 40000000003 are prime numbers.
A177506
Primes of the form 4*10^n+1.
Original entry on oeis.org
5, 41, 401, 4001, 40000000000001
Offset: 1
-
[a: n in [0..250] | IsPrime(a) where a is 4*10^n+1];
-
Select[Table[4 10^n + 1, {n, 0, 500}], PrimeQ] (* Vincenzo Librandi Jan 02 2014 *)
A101394
Numbers k such that 4*10^k+9 is prime.
Original entry on oeis.org
0, 2, 4, 5, 8, 9, 28, 191, 196, 2038, 34414, 39266, 50579, 94286, 108412, 130480, 178091, 185355
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Jan 15 2005
n = 2, 4, 5, 8, 9 are members since 409, 40009, 400009, 400000009 and 4000000009 are all prime.
-
Do[ If[ PrimeQ[4*10^n + 9], Print[n]], {n, 0, 10000}]
-
is(n)=ispseudoprime(4*10^n+9) \\ Charles R Greathouse IV, Jun 12 2017
a(10)=2038 from Joao da Silva (zxawyh66(AT)yahoo.com), Sep 30 2005
A101395
Numbers k such that 4*10^k+7 is prime.
Original entry on oeis.org
0, 1, 3, 9, 39, 2323
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Jan 15 2005
n = 1, 3, 9 are members since 47, 4007 and 4000000007 are primes.
-
Do[ If[ PrimeQ[4*10^n + 7], Print[n]], {n, 0, 10000}]
-
is(n)=ispseudoprime(4*10^n+7) \\ Charles R Greathouse IV, Jun 12 2017
A101712
Indices of primes in sequence defined by A(0) = 41, A(n) = 10*A(n-1) - 9 for n > 0.
Original entry on oeis.org
0, 1, 2, 12, 228, 241, 308, 956, 1472, 1493, 3181, 3726, 4176, 23209, 25718, 32834, 36989, 103957
Offset: 1
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 14 2004
4001 is prime, hence 2 is a term.
- Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
-
Select[Range[0, 1500], PrimeQ[4*10^# + 1] &] (* Robert Price, Mar 19 2015 *)
-
a=41;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-9)
-
for(n=0,1500,if(isprime(40*10^n+1),print1(n,",")))
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A109713
Numbers n such that 99 * 10^n + 1 is prime.
Original entry on oeis.org
1, 2, 4, 8, 16, 20, 24, 72, 200, 359, 454, 624, 1054, 2060, 6301, 8083, 8407, 13159, 65059, 74957
Offset: 1
For n=8 we have 99*10^8+1 = 9900000001, which is prime.
a(19)-a(20) from Kamada data by
Tyler Busby, Apr 16 2024
A109800
Numbers n such that 55*10^n + 1 is prime.
Original entry on oeis.org
2, 3, 7, 9, 33, 61, 93, 112, 284, 615, 1293, 2558, 2925, 5961, 6454, 7960, 17521, 40838
Offset: 1
A171612
Integers n such that (25*10^n)+1 is prime.
Original entry on oeis.org
1, 8, 255, 320, 609, 688, 1436, 3271, 3921, 6520, 19604, 38348, 63531
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Dec 13 2009
For n=8 we have (25*10^8)+1 = 25*100000000+1 = 2500000000+1 = 2500000001, which is prime.
a(12)-a(13) from Kamada data by
Tyler Busby, May 03 2024
A294396
Numbers k such that 12*10^k + 1 is prime.
Original entry on oeis.org
0, 2, 38, 80, 9230, 25598, 39500
Offset: 1
13 and 1201 are prime, so 0 and 2 are the initial values.
Cf.
A001562,
A096507,
A056797,
A056807,
A056806,
A102940,
A056805,
A056804,
A096508,
A102975,
A289051,
A099017,
A295325,
A273002,
A102945,
A282456,
A267420.
Cf.
A062339 (primes with digit sum 4).
-
ParallelMap[ If[ PrimeQ[12*10^# +1], #, Nothing] &, 2 + 6Range@ 4500] (* Robert G. Wilson v, Feb 13 2018 *)
-
isok(k) = isprime(12*10^k + 1); \\ Altug Alkan, Mar 04 2018
Showing 1-10 of 10 results.
Comments