cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A056806 Numbers n such that 4*10^n + 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 13, 229, 242, 309, 957, 1473, 1494, 3182, 3727, 4177, 23210, 25719, 32835, 36990, 103958, 789955, 1038890
Offset: 1

Views

Author

Robert G. Wilson v, Aug 22 2000

Keywords

Comments

Some of the results were computed using the PrimeFormGW (PFGW) primality-testing program. - Hugo Pfoertner, Nov 14 2019

Crossrefs

Cf. A056797 (9*10^n+1 is prime), A101712.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 4*10^n + 1], Print[ n ]], {n, 0, 30000}]
  • PARI
    is(n)=isprime(4*10^n+1) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = A101712(n-1) + 1.

Extensions

a(12)-a(16) using PrimeForm from Hugo Pfoertner, Jul 08 2004
32835 from Ray Chandler, Aug 30 2010
36990 from Peter Benson, Aug 23 2003 confirmed as next term by Ray Chandler, Sep 07 2010
103958 from Peter Benson, Dec 31 2004 confirmed as next term by Ray Chandler, Feb 18 2012
a(20)-a(21) from Kamada data by Tyler Busby, May 03 2024

A056807 Numbers k such that 3*10^k + 1 is prime.

Original entry on oeis.org

1, 3, 7, 10, 28, 36, 67, 81, 147, 483, 643, 1020, 1900, 2620, 10453, 27720, 52824, 105589, 111988, 618853, 665829
Offset: 1

Views

Author

Robert G. Wilson v, Aug 22 2000

Keywords

Examples

			k = 3 gives (3*10^3+1) = 3000+1 = 3001, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 3*10^k + 1], Print[ k ]], {k, 0, 20000}]
  • PARI
    is(k)=isprime(3*10^k+1) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = A101823(n) + 1.

Extensions

a(13)-a(14) from Julien Peter Benney (jpbenney(AT)ftml.net), Nov 23 2004
a(15) from Hugo Pfoertner, Jan 18 2005
a(16)-a(17) from Robert G. Wilson v, Jan 18 2005
a(18) from Roman Makarchuk, Dec 05 2008 confirmed as next term by Ray Chandler, Mar 02 2012
a(19) from Alexander Gramolin, Feb 24 2012 confirmed as next term by Ray Chandler, Mar 02 2012
a(20)-a(21) from Kamada data by Robert Price, Jan 26 2015

A087126 Primes of the form p^k - p^(k-1) + 1 for some prime p and integer k > 1.

Original entry on oeis.org

3, 5, 7, 17, 19, 43, 101, 157, 163, 257, 487, 1459, 2029, 4423, 6163, 14407, 19183, 22651, 23549, 26407, 37057, 39367, 62501, 65537, 77659, 113233, 121453, 143263, 208393, 292141, 342733, 375157, 412807, 527803, 564899, 590593, 697049, 843643
Offset: 1

Views

Author

T. D. Noe, Aug 15 2003

Keywords

Comments

It is usually the case that, for prime p and k > 1, the first time the totient function phi(n) has value p^k - p^(k-1) is for n = p^k. However, this is not true when p^k - p^(k-1) + 1 is prime.

Crossrefs

Cf. A002383 (primes of the form n^2 + n + 1, which is the same as n^2 - n + 1).
Cf. A019434 (Fermat primes), A003306 (2*3^n + 1 is prime), A056799 (8*9^n + 1 is prime), A056797 (9*10^n + 1 is prime), A087139 (least k such that p^k - p^(k-1) + 1 is prime for p = prime(n)).

Programs

  • Mathematica
    lst={}; maxNum=10^6; n=1; While[p=Prime[n]; p^2-p+1
    				

A347702 Prime numbers that give a remainder of 1 when divided by the sum of their digits.

Original entry on oeis.org

11, 13, 17, 41, 43, 97, 101, 131, 157, 181, 233, 239, 271, 311, 353, 401, 421, 491, 521, 541, 599, 617, 631, 647, 673, 743, 811, 859, 953, 1021, 1031, 1051, 1093, 1171, 1201, 1249, 1259, 1301, 1303, 1327, 1373, 1531, 1601, 1621, 1801, 1871, 2029, 2111, 2129, 2161
Offset: 1

Views

Author

Burak Muslu, Sep 10 2021

Keywords

Examples

			97 is a term since its sum of digits is 9+7 = 16, and 97 mod 16 = 1.
		

Crossrefs

Subsequence of A209871.
A259866 \ {31}, and the primes associated with A056804 \ {1, 2} and A056797 are subsequences.

Programs

  • Maple
    select(t -> isprime(t) and t mod convert(convert(t,base,10),`+`) = 1, [seq(i,i=3..10000,2)]); # Robert Israel, Mar 05 2024
  • Mathematica
    Select[Range[2000], PrimeQ[#] && Mod[#, Plus @@ IntegerDigits[#]] == 1 &] (* Amiram Eldar, Sep 10 2021 *)
  • PARI
    isok(p) = isprime(p) && ((p % sumdigits(p)) == 1); \\ Michel Marcus, Sep 10 2021
  • Python
    from sympy import primerange
    def ok(p): return p%sum(map(int, str(p))) == 1
    print(list(filter(ok, primerange(1, 2130)))) # Michael S. Branicky, Sep 10 2021
    

A100997 Indices of primes in sequence defined by A(0) = 91, A(m) = 10*A(m-1) - 9 for m > 0.

Original entry on oeis.org

2, 3, 4, 8, 21, 26, 35, 56, 61, 77, 200, 536, 695, 789, 904, 1037, 66885, 70499, 91835, 100612, 127239, 380733, 583695
Offset: 1

Views

Author

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Nov 26 2004

Keywords

Comments

Numbers k such that 90*10^k + 1 is prime.
Numbers k such that digit 9 followed by k >= 0 occurrences of digit 0 followed by digit 1 is prime.
Numbers corresponding to terms <= 1037 are certified primes.

Examples

			900001 is prime, hence 4 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • PARI
    a=91;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-9)
    
  • PARI
    for(n=0,1500,if(isprime(90*10^n+1),print1(n,",")))

Formula

a(n) = A056797(n) - 1.

Extensions

66885 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(18)-a(21) from Kamada data by Ray Chandler, Apr 28 2015
a(22)-a(23) from Kamada data by Mohammed Yaseen, Jul 20 2021

A109713 Numbers n such that 99 * 10^n + 1 is prime.

Original entry on oeis.org

1, 2, 4, 8, 16, 20, 24, 72, 200, 359, 454, 624, 1054, 2060, 6301, 8083, 8407, 13159, 65059, 74957
Offset: 1

Views

Author

Jason Earls, Aug 08 2005

Keywords

Comments

Terms < 21000 have been certified. Primality proof for 13159: PFGW Version 20041001.Win_Stable (v1.2 RC1b) [FFT v23.8] Primality testing 99*10^13159+1 [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 17 Calling Brillhart-Lehmer-Selfridge with factored part 69.89% 99*10^13159+1 is prime! (29.5646s+0.0028s) [Comment edited by N. J. A. Sloane, Jan 28 2025]

Examples

			For n=8 we have 99*10^8+1 = 9900000001, which is prime.
		

Crossrefs

Programs

Extensions

Edited by N. J. A. Sloane at the suggestion of Herman Jamke, Jan 13 2008
a(19)-a(20) from Kamada data by Tyler Busby, Apr 16 2024

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))

A109749 Numbers n such that 88 * 10^n + 1 is prime.

Original entry on oeis.org

1, 3, 4, 7, 18, 30, 82, 99, 105, 106, 147, 334, 1092, 1221, 3705, 5524, 30355, 35962
Offset: 1

Views

Author

Jason Earls, Aug 11 2005

Keywords

Comments

All terms have been certified. Primality proof for the largest: PFGW Version 20041001.Win_Stable (v1.2 RC1b) [FFT v23.8] Primality testing 88*10^30355+1 [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 3 Calling Brillhart-Lehmer-Selfridge with factored part 69.89% 88*10^30355+1 is prime! (491.3713s+0.8690s)

Crossrefs

Programs

Extensions

a(18) from Kamada data by Tyler Busby, Apr 16 2024

A171612 Integers n such that (25*10^n)+1 is prime.

Original entry on oeis.org

1, 8, 255, 320, 609, 688, 1436, 3271, 3921, 6520, 19604, 38348, 63531
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Dec 13 2009

Keywords

Comments

No others less than 20000.
See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "25001".

Examples

			For n=8 we have (25*10^8)+1 = 25*100000000+1 = 2500000000+1 = 2500000001, which is prime.
		

Crossrefs

Extensions

Edited by Ray Chandler, Dec 23 2010
a(12)-a(13) from Kamada data by Tyler Busby, May 03 2024

A294396 Numbers k such that 12*10^k + 1 is prime.

Original entry on oeis.org

0, 2, 38, 80, 9230, 25598, 39500
Offset: 1

Views

Author

Patrick A. Thomas, Feb 12 2018

Keywords

Comments

k must be even since 12*10^k + 1 is divisible by 11 if k is odd. - Robert G. Wilson v, Feb 12 2018
a(7) > 27440. - Robert G. Wilson v, Feb 17 2018
a(8) > 10^5. - Jeppe Stig Nielsen, Jan 31 2023

Examples

			13 and 1201 are prime, so 0 and 2 are the initial values.
		

Crossrefs

Programs

  • Mathematica
    ParallelMap[ If[ PrimeQ[12*10^# +1], #, Nothing] &, 2 + 6Range@ 4500] (* Robert G. Wilson v, Feb 13 2018 *)
  • PARI
    isok(k) = isprime(12*10^k + 1); \\ Altug Alkan, Mar 04 2018

Extensions

a(5) from Robert G. Wilson v, Feb 12 2018
a(6) from Robert G. Wilson v, Feb 13 2018
a(7) from Jeppe Stig Nielsen, Jan 28 2023
Showing 1-10 of 11 results. Next