A069813 Maximum number of triangles in polyiamond with perimeter n.
1, 2, 3, 6, 7, 10, 13, 16, 19, 24, 27, 32, 37, 42, 47, 54, 59, 66, 73, 80, 87, 96, 103, 112, 121, 130, 139, 150, 159, 170, 181, 192, 203, 216, 227, 240, 253, 266, 279, 294, 307, 322, 337, 352, 367, 384, 399, 416, 433, 450, 467, 486, 503, 522, 541, 560, 579
Offset: 3
Examples
a(10) = 16 because the maximum number of triangles in a polyiamond of perimeter 10 is 16.
Links
- Colin Barker, Table of n, a(n) for n = 3..1000
- W. C. Yang, R. R. Meyer, Maximal and minimal polyiamonds, 2002.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 65); Coefficients(R!( x^3*(x^2-x-1)*(x^2+1)/((x-1)^3*(x+1)*(x^2+x+1)))); // Marius A. Burtea, Jan 03 2020 -
Maple
A069813 := proc(n) round(n^2/6) ; if modp(n,6) <> 0 then %-1 ; else % ; end if; end proc: # R. J. Mathar, Jul 14 2015
-
Mathematica
LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 2, 3, 6, 7, 10}, 60] (* Jean-François Alcover, Jan 03 2020 *)
-
PARI
a(n) = round(n^2/6) - (n % 6 != 0) \\ Michel Marcus, Jul 17 2013
-
PARI
Vec(x^3*(x^2-x-1)*(x^2+1)/((x-1)^3*(x+1)*(x^2+x+1)) + O(x^60)) \\ Colin Barker, Jan 19 2015
Formula
From Colin Barker, Jan 18 2015: (Start)
a(n) = round((-25 + 9*(-1)^n + 8*exp(-2/3*i*n*Pi) + 8*exp((2*i*n*Pi)/3) + 6*n^2)/36), where i=sqrt(-1).
G.f.: x^3*(1+x-x^2)*(1+x^2) / ((1-x)^3*(1+x)*(1+x+x^2)). (End)
Comments