A057660 a(n) = Sum_{k=1..n} n/gcd(n,k).
1, 3, 7, 11, 21, 21, 43, 43, 61, 63, 111, 77, 157, 129, 147, 171, 273, 183, 343, 231, 301, 333, 507, 301, 521, 471, 547, 473, 813, 441, 931, 683, 777, 819, 903, 671, 1333, 1029, 1099, 903, 1641, 903, 1807, 1221, 1281, 1521, 2163, 1197, 2101, 1563, 1911, 1727
Offset: 1
References
- David M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, p. 152.
- H. W. Gould and Temba Shonhiwa, Functions of GCD's and LCM's, Indian J. Math. (Allahabad), Vol. 39, No. 1 (1997), pp. 11-35.
- H. W. Gould and Temba Shonhiwa, A generalization of Cesaro's function and other results, Indian J. Math. (Allahabad), Vol. 39, No. 2 (1997), pp. 183-194.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Habib Amiri and S. M. Jafarian Amiri, Sum of element orders on finite groups of the same order, J. Algebra Appl. 10 (2011), no. 2, 187--190. MR2795731 (2012d:20050)
- Habib Amiri, S. M. Jafarian Amiri, and I. M. Isaacs, Sums of element orders in finite groups Comm. Algebra 37 (2009), no. 9, 2978--2980. MR2554185 (2010i:20022)
- Miriam Mahannah El-Farrah, Expectation Numbers of Cyclic Groups, MS Thesis, Western Kentucky University, August 2015.
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 154-5.
- Walther Janous, Problem 10829, Amer. Math. Monthly, 107 (2000), p. 753.
- Yadollah Marefat, Ali Iranmanesh, and Abolfazl Tehranian, On the sum of element orders of finite simple groups, J. Algebra Applications, 12 (2013), #1350026.
- Mathematical Reflections, Solution to Problem U338, Issue 4, 2015, p 17.
- Joachim von zur Gathen, Arnold Knopfmacher, Florian Luca, Lutz G. Lucht, and Igor E. Shparlinski, Average order of cyclic groups, J. Théorie Nombres Bordeaux 16 (1) (2004) 107-123.
Crossrefs
Programs
-
Haskell
a057660 n = sum $ map (div n) $ a050873_row n -- Reinhard Zumkeller, Nov 25 2013
-
Mathematica
Table[ DivisorSigma[ 2, n^2 ] / DivisorSigma[ 1, n^2 ], {n, 1, 128} ] Table[Total[Denominator[Range[n]/n]], {n, 55}] (* Alonso del Arte, Oct 07 2011 *) f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 21 2020 *)
-
PARI
a(n)=if(n<1,0,sumdiv(n,d,d*eulerphi(d)))
-
PARI
a(n)=sumdivmult(n,d, eulerphi(d)*d) \\ Charles R Greathouse IV, Sep 09 2014
-
Python
from math import gcd def A057660(n): return sum(n//gcd(n,k) for k in range(1,n+1)) # Chai Wah Wu, Aug 24 2023
-
Python
from math import prod from sympy import factorint def A057660(n): return prod((p**((e<<1)+1)+1)//(p+1) for p,e in factorint(n).items()) # Chai Wah Wu, Aug 05 2024
Formula
a(n) = Sum_{d|n} d*A000010(d) = Sum_{d|n} d*A054522(n,d), sum of d times phi(d) for all divisors d of n, where phi is Euler's phi function.
a(n) = sigma_2(n^2)/sigma_1(n^2) = A001157(A000290(n))/A000203(A000290(n)) = A001157(A000290(n))/A065764(n). - Labos Elemer, Nov 21 2001
a(n) = Sum_{d|n} A000010(d^2). - Enrique Pérez Herrero, Jul 12 2010
a(n) <= (n-1)*n + 1, with equality if and only if n is noncomposite. - Daniel Forgues, Apr 30 2013
G.f.: Sum_{n >= 1} n*phi(n)*x^n/(1 - x^n) = x + 3*x^2 + 7*x^3 + 11*x^4 + .... Dirichlet g.f.: sum {n >= 1} a(n)/n^s = zeta(s)*zeta(s-2)/zeta(s-1) for Re s > 3. Cf. A078747 and A176797. - Peter Bala, Dec 30 2013
a(n) = Sum_{i=1..n} numerator(n/i). - Wesley Ivan Hurt, Feb 26 2017
L.g.f.: -log(Product_{k>=1} (1 - x^k)^phi(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 21 2018
From Richard L. Ollerton, May 10 2021: (Start)
a(n) = Sum_{k=1..n} lcm(n,k)/k.
a(n) = Sum_{k=1..n} gcd(n,k)*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
From Vaclav Kotesovec, Jun 13 2021: (Start)
Sum_{k=1..n} a(k)/k ~ 3*zeta(3)*n^2/Pi^2.
Sum_{k=1..n} k^2/a(k) ~ A345294 * n.
Sum_{k=1..n} a(k) ~ 2*zeta(3)*n^3/Pi^2. - Vaclav Kotesovec, Jun 10 2023
Extensions
More terms from James Sellers, Oct 16 2000
Comments