cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A243098 Number T(n,k) of endofunctions on [n] with all cycles of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 16, 6, 2, 0, 125, 51, 24, 6, 0, 1296, 560, 300, 120, 24, 0, 16807, 7575, 4360, 2160, 720, 120, 0, 262144, 122052, 73710, 41160, 17640, 5040, 720, 0, 4782969, 2285353, 1430016, 861420, 430080, 161280, 40320, 5040
Offset: 0

Views

Author

Alois P. Heinz, Aug 18 2014

Keywords

Comments

T(0,0) = 1 by convention.

Examples

			Triangle T(n,k) begins:
  1;
  0,      1;
  0,      3,      1;
  0,     16,      6,     2;
  0,    125,     51,    24,     6;
  0,   1296,    560,   300,   120,    24;
  0,  16807,   7575,  4360,  2160,   720,  120;
  0, 262144, 122052, 73710, 41160, 17640, 5040, 720;
  ...
		

Crossrefs

Columns k=0-4 give: A000007, A000272(n+1) for n>0, A057817(n+1), 2*A060917, 6*A060918.
Row sums give A241980.
T(2n,n) gives A246050.
Main diagonal gives A000142(n-1) for n>0.

Programs

  • Maple
    with(combinat):
    T:= (n, k)-> `if`(k*n=0, `if`(k+n=0, 1, 0),
        add(binomial(n-1, j*k-1)*n^(n-j*k)*(k-1)!^j*
        multinomial(j*k, k$j, 0)/j!, j=0..n/k)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    multinomial[n_, k_] := n!/Times @@ (k!); T[n_, k_] := If[k*n==0, If[k+n == 0, 1, 0], Sum[Binomial[n-1, j*k-1]*n^(n-j*k)*(k-1)!^j*multinomial[j*k, Append[Array[k&, j], 0]]/j!, {j, 0, n/k}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

E.g.f. of column k>0: exp((-LambertW(-x))^k/k), e.g.f. of column k=0: 1.

A060917 Expansion of e.g.f.: exp((-1)^k/k*LambertW(-x)^k)/(k-1)!, k=3.

Original entry on oeis.org

1, 12, 150, 2180, 36855, 715008, 15697948, 385300800, 10463945085, 311697869120, 10108450408914, 354630018043392, 13384651003544275, 540860323696035840, 23300648262667635960, 1066165291831917811712
Offset: 3

Views

Author

Vladeta Jovovic, Apr 10 2001

Keywords

Comments

a(n) = A243098(n,3)/2. - Alois P. Heinz, Aug 19 2014

Crossrefs

Programs

  • Mathematica
    nn = 20; CoefficientList[Series[E^(-1/3*LambertW[-x]^3)/2, {x, 0, nn}], x]* Range[0, nn]! (* Vaclav Kotesovec, Nov 27 2012 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(-lambertw(-x)^3/3)/2 - 1/2)) \\ G. C. Greubel, Feb 19 2018

Formula

a(n) = (n-1)!/(k-1)!*Sum_{i=0..floor((n-k)/k)} 1/(i!*k^i)*n^(n-(i+1)*k)/(n-(i+1)*k)!, k=3.
a(n) ~ 1/2*exp(1/3)*n^(n-1). - Vaclav Kotesovec, Nov 27 2012

A060918 Expansion of e.g.f.: exp((-1)^k/k*LambertW(-x)^k)/(k-1)!, k=4.

Original entry on oeis.org

1, 20, 360, 6860, 143570, 3321864, 84756000, 2372001720, 72384192540, 2394775746220, 85443353291296, 3271908306712500, 133893717061821080, 5832748749666611920, 269542701201588099840, 13172225935626444660144, 678788199609330554538000, 36790272488566573278647940
Offset: 4

Views

Author

Vladeta Jovovic, Apr 10 2001

Keywords

Comments

a(n) = A243098(n,4)/6. - Alois P. Heinz, Aug 19 2014

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^(1/4*LambertW[-x]^4)/6, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(lambertw(-x)^4/4)/3! - 1/3!)) \\ G. C. Greubel, Feb 19 2018

Formula

a(n) = (n-1)!/(k-1)!*Sum_{i=0..floor((n-k)/k)} 1/(i!*k^i)*n^(n-(i+1)*k)/(n-(i+1)*k)!, k=4.
a(n) ~ 1/6*exp(1/4)*n^(n-1). - Vaclav Kotesovec, Nov 27 2012

A332237 E.g.f.: -log(1 + LambertW(-x) * (2 + LambertW(-x)) / 2).

Original entry on oeis.org

1, 2, 8, 49, 409, 4356, 56734, 877094, 15742521, 322454800, 7434673036, 190792267128, 5398552673617, 167087263076384, 5617979017621650, 203987454978218416, 7957053981454827601, 331920300203780633856, 14746208516909980554736, 695208730205550274544000
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 07 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[-Log[1 + LambertW[-x] (2 + LambertW[-x])/2], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    a[n_] := a[n] = n^(n - 2) + (1/n) Sum[Binomial[n, k] (n - k)^(n - k - 2) k a[k], {k, 1, n - 1}]; Table[a[n], {n, 1, 20}]

Formula

E.g.f.: -log(1 - Sum_{k>=1} k^(k-2) * x^k / k!).
a(n) = n^(n-2) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * (n-k)^(n-k-2) * k * a(k).
a(n) ~ 2 * n^(n-2). - Vaclav Kotesovec, Feb 16 2020

A072962 Unsigned reduced Euler characteristic for the matroid complex of cycle matroid for complete bipartite graph K_{n,n}.

Original entry on oeis.org

1, 20, 1071, 107104, 17201225, 4053135456, 1318104508735, 565989104282624, 310299479406324369, 211554189796535488000, 175592153482084893991151, 174356954302176729972264960, 204111110614488911169799727641, 278218647289052493421682954399744
Offset: 2

Views

Author

W. Kook and L. Thoma (andrewk(AT)math.uri.edu), Aug 20 2002

Keywords

Comments

We will denote this number by a(n,n). It is also the value of the Tutte polynomial T_{G}(0,1) for G=K_{n,n}.
The formula given for a(s,t) is valid for all s>1 and t>0. Also note that a(s,t) = a(t,s) because K_{s,t} = K_{t,s}. For small values of s we have the following formulas: a(2,t)=t-1, a(3,t)=2^{t-2}(t-1)(3t-4), a(4,t)=3^{t-3}(t-1)(16t^2-41t+27), a(5,t)=4^{t-4}(t-1)(125t^3-376t^2+378t-133)

Examples

			a(2,2)=1. Since K_{2,2} is a cycle with four edges, the matroid complex of cycle matroid for K_{2,2} is the 2-skeleton of standard 3-simplex. Therefore the unsigned reduced Euler characteristic for this complex is |-1+4-6+4|=1
		

References

  • I. Novik, A. Postnikov and B. Sturmfels: Syzygies of oriented matroids, Duke Math. J. 111 (2002), no. 2, 287-317.

Crossrefs

Cf. A057817.

Formula

a(n) = a(n, n) where a(s, t) = Sum_{i=0..s-2} (-1)^i * binomial(s-1,i) * w(s-1-i, t), where s,t>1 and an e.g.f. for w(a, b) is given by exp( Sum_{i,j>0} i^(j-1) * j^(i-1) * (j-1) * x^i * y^j / (i! * j!) ).

Extensions

More terms from Sean A. Irvine, Nov 08 2024
Showing 1-5 of 5 results.