cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A243098 Number T(n,k) of endofunctions on [n] with all cycles of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 16, 6, 2, 0, 125, 51, 24, 6, 0, 1296, 560, 300, 120, 24, 0, 16807, 7575, 4360, 2160, 720, 120, 0, 262144, 122052, 73710, 41160, 17640, 5040, 720, 0, 4782969, 2285353, 1430016, 861420, 430080, 161280, 40320, 5040
Offset: 0

Views

Author

Alois P. Heinz, Aug 18 2014

Keywords

Comments

T(0,0) = 1 by convention.

Examples

			Triangle T(n,k) begins:
  1;
  0,      1;
  0,      3,      1;
  0,     16,      6,     2;
  0,    125,     51,    24,     6;
  0,   1296,    560,   300,   120,    24;
  0,  16807,   7575,  4360,  2160,   720,  120;
  0, 262144, 122052, 73710, 41160, 17640, 5040, 720;
  ...
		

Crossrefs

Columns k=0-4 give: A000007, A000272(n+1) for n>0, A057817(n+1), 2*A060917, 6*A060918.
Row sums give A241980.
T(2n,n) gives A246050.
Main diagonal gives A000142(n-1) for n>0.

Programs

  • Maple
    with(combinat):
    T:= (n, k)-> `if`(k*n=0, `if`(k+n=0, 1, 0),
        add(binomial(n-1, j*k-1)*n^(n-j*k)*(k-1)!^j*
        multinomial(j*k, k$j, 0)/j!, j=0..n/k)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    multinomial[n_, k_] := n!/Times @@ (k!); T[n_, k_] := If[k*n==0, If[k+n == 0, 1, 0], Sum[Binomial[n-1, j*k-1]*n^(n-j*k)*(k-1)!^j*multinomial[j*k, Append[Array[k&, j], 0]]/j!, {j, 0, n/k}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

E.g.f. of column k>0: exp((-LambertW(-x))^k/k), e.g.f. of column k=0: 1.

A057817 Moebius invariant of cographic hyperplane arrangement for complete graph K_n. Also value of Tutte dichromatic polynomial T_G(0,1) for G=K_n. Also alternating sum F_{n,1} - F_{n,2} + F_{n,3} - ..., where F_{n,k} is the number of labeled forests on n nodes with k connected components.

Original entry on oeis.org

1, 0, 1, 6, 51, 560, 7575, 122052, 2285353, 48803904, 1171278945, 31220505800, 915350812299, 29281681800384, 1015074250155511, 37909738774479600, 1517587042234033425, 64830903253553212928, 2944016994706445303937
Offset: 1

Views

Author

Alex Postnikov (apost(AT)math.mit.edu), Nov 06 2000

Keywords

Comments

The rank of reduced homology groups for the matroid complex of acyclic subgraphs in complete graph K_n (n>1). It is also the number of labeled edge-rooted forests on n-1 nodes where each connected component contains at least one edge.
The description of this sequence as the number of labeled edge-rooted forests on n-1 nodes appeared in W. Kook's Ph.D. thesis (G. Carlsson, advisor), Categories of acyclic graphs and automorphisms of free groups, Stanford University, 1996.

Examples

			For n=4, the number of labeled edge-rooted forests on three (= n-1) nodes is 6: There are 3 labeled trees on three nodes. These are the only forests with at least one edge in each connected component. Each tree has 2 edges and each of the two may be marked as the root.
		

References

  • W. Kook, Categories of acyclic graphs and automorphisms of free groups, Ph.D. thesis (G. Carlsson, advisor), Stanford University, 1996

Crossrefs

Cf. column k=2 of A243098.

Programs

  • Maple
    for n from 1 to 50 do printf(`%d,`, (n-1)*sum((n-2)!/(2^k*k!*(n-2-2*k)!)*n^(n-2-2*k), k=0..floor((n-2)/2))) od:
  • Mathematica
    s=20;(*generates first s terms starting from n=2*) K := Exp[Sum[(m-1)*(m^(m-2))*(x^m)/m!, {m, 2, 2s}]]; S := Series[K, {x, 0, s}]; h[i_] := SeriesCoefficient[S, i-1]*(i-1)!; Table[h[n+1], {n, s}]
    a[n_] := (n-2)*Sum[ (n-1)^(n-2k-3)*(n-3)! / (2^k*k!*(n-2k-3)!), {k, 0, Floor[ (n-3)/ 2 ]}]; a[1] = 1; Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Dec 11 2012, after Maple *)
  • PARI
    a(n)=if(n<1,0,(n-1)!*polcoeff(exp(sum(k=1,n-1,k^(k-1)*x^k/k!,O(x^n))^2/2),n-1))
    
  • PARI
    a(n)=if(n<2,n==1,sum(k=0,(n-3)\2,(n-1)!/(2^k*k!*(n-3-2*k)!)*(n-1)^(n-4-2*k)))
    
  • PARI
    df(n)=(2*n)!/(n!*2^n);  \\ A001147
    he(n,x)=x^n+sum(k=1, n\2, binomial(n,2*k) * df(k) * x^(n-2*k) );
    a(n)=if( n<3, n==1, (n-2)*he(n-3, n-1) );
    /* Joerg Arndt, May 06 2013 */

Formula

E.g.f.: exp(1/2*LambertW(-x)^2). - Vladeta Jovovic, Apr 10 2001
E.g.f.: integral exp( Sum_{m>1}(m-1)*m^{m-2}*x^{m}/m!) dx (n-1) Sum_{k=0}^{[(n-2)/2]} binomial((n-2)! , 2^k k! (n-2-2k)!) n^{n-2-2k}.
E.g.f.: exp( Sum_{m>1}(m-1)*m^{m-2}*x^{m}/m!).
E.g.f.: integral(exp(1/2*LambertW(-x)^2)dx). - Vladeta Jovovic, Apr 10 2001
a(n) ~ exp(-1/2)*n^(n-2). - Vaclav Kotesovec, Dec 12 2012
a(n) = n^(n-2) - Sum_{k=1..n-1} binomial(n-1,k-1) * k^(k-2) * a(n-k). - Ilya Gutkovskiy, Feb 07 2020

Extensions

More terms from James Sellers, Nov 08 2000
Additional comments from Woong Kook (andrewk(AT)math.uri.edu), Feb 12 2002
Further comments from Michael Somos, Sep 18 2002
Updated author's URL and e-mail address R. J. Mathar, May 23 2010

A060917 Expansion of e.g.f.: exp((-1)^k/k*LambertW(-x)^k)/(k-1)!, k=3.

Original entry on oeis.org

1, 12, 150, 2180, 36855, 715008, 15697948, 385300800, 10463945085, 311697869120, 10108450408914, 354630018043392, 13384651003544275, 540860323696035840, 23300648262667635960, 1066165291831917811712
Offset: 3

Views

Author

Vladeta Jovovic, Apr 10 2001

Keywords

Comments

a(n) = A243098(n,3)/2. - Alois P. Heinz, Aug 19 2014

Crossrefs

Programs

  • Mathematica
    nn = 20; CoefficientList[Series[E^(-1/3*LambertW[-x]^3)/2, {x, 0, nn}], x]* Range[0, nn]! (* Vaclav Kotesovec, Nov 27 2012 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(-lambertw(-x)^3/3)/2 - 1/2)) \\ G. C. Greubel, Feb 19 2018

Formula

a(n) = (n-1)!/(k-1)!*Sum_{i=0..floor((n-k)/k)} 1/(i!*k^i)*n^(n-(i+1)*k)/(n-(i+1)*k)!, k=3.
a(n) ~ 1/2*exp(1/3)*n^(n-1). - Vaclav Kotesovec, Nov 27 2012
Showing 1-3 of 3 results.