cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A104745 a(n) = 5^n + n.

Original entry on oeis.org

1, 6, 27, 128, 629, 3130, 15631, 78132, 390633, 1953134, 9765635, 48828136, 244140637, 1220703138, 6103515639, 30517578140, 152587890641, 762939453142, 3814697265643, 19073486328144, 95367431640645, 476837158203146, 2384185791015647, 11920928955078148, 59604644775390649
Offset: 0

Views

Author

Zak Seidov, Mar 23 2005

Keywords

Comments

Numbers m=5^n+n such that equation x=5^(m-x) has solution x=5^n, see A104744.
No primes of the form 5^n+n for n < 7954. - Thomas Ordowski, Oct 28 2013
a(7954) is prime (5560 digits). - Thomas Ordowski, May 07 2015

Crossrefs

Programs

Formula

From Vincenzo Librandi, Jun 16 2013: (Start)
G.f.: (1-x-4*x^2)/((1-5*x)*(1-x)^2).
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3). (End)
E.g.f.: exp(x)*(exp(4*x) + x). - Elmo R. Oliveira, Mar 05 2025

Extensions

More terms from Jonathan R. Love (japanada11(AT)yahoo.ca), Mar 09 2007

A224470 Numbers k such that 7^k - k is prime.

Original entry on oeis.org

2, 6, 8, 12, 44, 48, 512, 1088, 1104, 6038
Offset: 1

Views

Author

Alex Ratushnyak, Apr 06 2013

Keywords

Comments

a(11) > 92000. - Giovanni Resta, Apr 08 2013
a(11) > 2*10^5. - Robert Price, Feb 11 2014

Crossrefs

Programs

  • PARI
    forstep(n=2,10^4,2,if(ispseudoprime(7^n-n),print1(n,", "))); /* Joerg Arndt, Apr 07 2013 */

A224471 Numbers k such that 8^k - k is prime.

Original entry on oeis.org

1, 3, 37, 45, 597, 1131, 14203, 112539
Offset: 1

Views

Author

Alex Ratushnyak, Apr 06 2013

Keywords

Comments

a(8) > 41000. - Giovanni Resta, Apr 07 2013
a(9) > 2*10^5. - Robert Price, Jan 19 2014

Crossrefs

Programs

  • Java
    import java.math.BigInteger;
    public class A224471 {
      public static void main (String[] args) {
        BigInteger b8 = BigInteger.valueOf(8);
        BigInteger m = BigInteger.valueOf(64);
        for(long n=1; ; n+=2) {
            BigInteger b = b8.subtract(BigInteger.valueOf(n));
            if (b.isProbablePrime(2)) {
                if (b.isProbablePrime(80))
                    System.out.printf("%d\n", n);
            }
            b8 = b8.multiply(m);
        }
      }
    }
    
  • PARI
    forstep(n=1,10^4,2,if(ispseudoprime(8^n-n),print1(n,", "))); /* Joerg Arndt, Apr 07 2013 */

Extensions

a(7) from Giovanni Resta, Apr 07 2013
a(8) from Robert Price, Jan 19 2014

A273940 Primes of the form 5^m - m.

Original entry on oeis.org

23, 15619, 244140613
Offset: 1

Views

Author

Vincenzo Librandi, Jun 05 2016

Keywords

Comments

Corresponding values of m are given in A058046.
The next term has 254 digits.

Crossrefs

Primes of the form k^m - m: A081296 (k=2), A224420 (k=3), A224451 (k=4), this sequence (k=5), A273941 (k=6), A224468 (k=7), A224469 (k=8).

Programs

  • Magma
    [a: n in [0..400] | IsPrime(a) where a is 5^n-n];
    
  • Mathematica
    Select[Table[5^n - n, {n, 400}], PrimeQ]
  • PARI
    forstep(n=2,1e4,2, if(ispseudoprime(t=5^n-n), print1(t", "))) \\ Charles R Greathouse IV, Jun 08 2016

Formula

a(n) = A024050(A058046(n)). - Amiram Eldar, Jul 27 2025

A382786 Numbers k such that 5^k + k is prime.

Original entry on oeis.org

7954, 22102, 33054, 135156
Offset: 1

Views

Author

Nico Puada, Apr 24 2025

Keywords

Comments

All terms must end in the digit 2, 4, 6 or 8, otherwise 5^k + k is divisible by 2 or 5, which is not prime. - Jakub Buczak, May 04 2025

Crossrefs

Programs

  • Mathematica
    Select[Range[35000], PrimeQ[5^# + #] &] (* Nico Puada, Apr 24 2025 *)

Extensions

a(4) corrected by Jakub Buczak, May 04 2025

A224506 Numbers k such that 9^k - k is prime.

Original entry on oeis.org

2, 70, 88, 6562, 9100, 11758, 34334, 39212, 120590
Offset: 1

Views

Author

Alex Ratushnyak, Apr 08 2013

Keywords

Comments

a(7) > 20000. - Giovanni Resta, Apr 09 2013
a(10) > 2*10^5. - Robert Price, Mar 12 2014

Crossrefs

Programs

Extensions

a(6) from Giovanni Resta, Apr 09 2013
a(7)-a(9) from Robert Price, Mar 12 2014
Showing 1-6 of 6 results.