cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A058129 Number of nonisomorphic monoids (semigroups with identity) of order n.

Original entry on oeis.org

0, 1, 2, 7, 35, 228, 2237, 31559, 1668997, 3685886630
Offset: 0

Views

Author

Christian G. Bower, Nov 13 2000

Keywords

Crossrefs

Cf. A027851 (number of all nonisomorphic semigroups).

Formula

a(n) = 2*A058133(n) - A058132(n).
a(n) < A027851(n) except for equality iff n = 1. - M. F. Hasler, Dec 10 2018
From Elijah Beregovsky, May 13 2025 (Start):
a(n) >= A027851(n-1).
Conjecture: a(n) = A027851(n-1)*(1+o(1)). See Koubek and Rödl paper in the Links.
Conjecture: a(n) = A058153(n)/n! * (1+o(1)). See Grillet paper in the Links. (End)

Extensions

a(8) from Christian G. Bower, Dec 26 2006
a(0) = 0 prepended by M. F. Hasler, Dec 10 2018
a(9) from Elijah Beregovsky, from the work of G. Cruttwell and R. Leblanc, May 12 2025

A058157 Triangle read by rows: T(n,k) is the number of labeled monoids of order n with k idempotents.

Original entry on oeis.org

1, 2, 2, 3, 18, 12, 16, 180, 288, 140, 30, 2640, 6540, 8380, 3020, 480, 119610, 238200, 421020, 372360, 100362, 840, 25196052, 13786290, 26803000, 36174600, 22822674, 4768624, 22080, 48687313640, 2254725312, 2358499080, 3849768160, 3859581096, 1826525120, 305498328
Offset: 1

Views

Author

Christian G. Bower, Nov 14 2000

Keywords

Examples

			Triangle begins:
   1;
   2,    2;
   3,   18,   12;
  16,  180,  288,  140;
  30, 2640, 6540, 8380, 3020;
  ...
		

Crossrefs

Row sums give A058153.
Column 1: A034383.
Main diagonal is A351731.
Cf. A058137 (isomorphism classes), A058158, A058159 (commutative), A058166.

Formula

T(n,k) = A058158(n,k)*n.

Extensions

a(30)-a(36) from Andrew Howroyd, Feb 15 2022

A088317 a(n) = 8*a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 4.

Original entry on oeis.org

1, 4, 33, 268, 2177, 17684, 143649, 1166876, 9478657, 76996132, 625447713, 5080577836, 41270070401, 335241141044, 2723199198753, 22120834731068, 179689877047297, 1459639851109444, 11856808685922849, 96314109338492236, 782369683393860737, 6355271576489378132, 51624542295308885793
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Nov 06 2003

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 4^(n-1) else 8*Self(n-1) +Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 13 2022
    
  • Mathematica
    LinearRecurrence[{8,1},{1,4},30] (* or *) With[{c=Sqrt[17]},Simplify/@ Table[1/2 (c-4)((c+4)^n-(4-c)^n (33+8c)),{n,30}]] (* Harvey P. Dale, May 07 2012 *)
  • Maxima
    a[0]:1$ a[1]:4$ a[n]:=8*a[n-1]+a[n-2]$ A088317(n):=a[n]$
    makelist(A088317(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
    
  • SageMath
    A088317=BinaryRecurrenceSequence(8,1,1,4)
    [A088317(n) for n in range(31)] # G. C. Greubel, Dec 13 2022

Formula

a(n) = ( (4+sqrt(17))^n + (4-sqrt(17))^n )/2.
a(n) = A086594(n)/2.
Lim_{n -> oo} a(n+1)/a(n) = 4 + sqrt(17).
From Paul Barry, Nov 15 2003: (Start)
E.g.f.: exp(4*x)*cosh(sqrt(17)*x).
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k)*17^k*4^(n-2*k).
a(n) = (-i)^n * T(n, 4*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. (End)
a(n) = A041024(n-1), n>0. - R. J. Mathar, Sep 11 2008
G.f.: (1-4*x)/(1-8*x-x^2). - Philippe Deléham, Nov 16 2008 and Nov 20 2008
a(n) = (1/2)*((33+8*sqrt(17))*(4-sqrt(17))^(n+2) + (33-8*sqrt(17))*(4+sqrt(17))^(n+2)). - Harvey P. Dale, May 07 2012

A351731 Number of labeled idempotent monoids of order n.

Original entry on oeis.org

1, 2, 12, 140, 3020, 100362, 4768624, 305498328, 25293331098, 2619996058190
Offset: 1

Views

Author

Andrew Howroyd, Feb 17 2022

Keywords

Crossrefs

Main diagonal of A058157.

Formula

a(n) = n * A351731(n-1).

A058154 Number of labeled monoids of order n with a fixed identity.

Original entry on oeis.org

1, 2, 11, 156, 4122, 208672, 18507440, 7892741602
Offset: 1

Views

Author

Christian G. Bower, Nov 14 2000

Keywords

Crossrefs

a(n) = A058153(n)/n.

Extensions

a(8) from Christian G. Bower, Dec 28 2006

A346413 Number of labeled totally ordered monoids with n elements.

Original entry on oeis.org

1, 2, 8, 34, 184, 1218, 9742, 92882, 1053248, 14592054
Offset: 1

Views

Author

Bianca Newell, Jul 15 2021

Keywords

Comments

The terms have been computed using the algorithm described in the referenced paper.

Crossrefs

Cf. A058153.
Showing 1-6 of 6 results.