cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A051950 Differences between values of tau(n) (A000005): a(n) = tau(n)-tau(n-1).

Original entry on oeis.org

1, 0, 1, -1, 2, -2, 2, -1, 1, -2, 4, -4, 2, 0, 1, -3, 4, -4, 4, -2, 0, -2, 6, -5, 1, 0, 2, -4, 6, -6, 4, -2, 0, 0, 5, -7, 2, 0, 4, -6, 6, -6, 4, 0, -2, -2, 8, -7, 3, -2, 2, -4, 6, -4, 4, -4, 0, -2, 10, -10, 2, 2, 1, -3, 4, -6, 4, -2, 4, -6, 10, -10, 2, 2, 0, -2, 4, -6, 8, -5, -1, -2, 10, -8, 0, 0, 4, -6, 10
Offset: 2

Views

Author

Asher Auel, Dec 16 1999

Keywords

Crossrefs

Programs

  • Haskell
    a051950 n = a051950_list !! n
    a051950_list = 1 : zipWith (-) (tail a000005_list) a000005_list
    -- Reinhard Zumkeller, Feb 04 2013
  • Mathematica
    Differences[DivisorSigma[0, Range[100]]] (* Alonso del Arte, Oct 14 2013, based on T. D. Noe's program for A182394 *)

Formula

G.f.: (1-x)*sum(k >= 1, x^k/(1-x^k)). - Benoit Cloitre, Apr 24 2003

Extensions

Edited (and offset corrected) by N. J. A. Sloane, Oct 05 2017

A058197 Where d(m) (number of divisors, A000005) rises by at least n.

Original entry on oeis.org

1, 5, 11, 11, 23, 23, 47, 47, 59, 59, 119, 119, 167, 167, 179, 179, 239, 239, 359, 359, 359, 359, 719, 719, 719, 719, 719, 719, 839, 839, 1259, 1259, 1259, 1259, 1679, 1679, 2519, 2519, 2519, 2519, 2519, 2519, 2519, 2519, 3359, 3359, 5039, 5039, 5039, 5039
Offset: 1

Views

Author

N. J. A. Sloane, Nov 28 2000

Keywords

Comments

a(n) exists for all n (Turán, 1954). - Amiram Eldar, Apr 13 2024

Examples

			d(11) = 2, d(12) = 6 gives first jump of >= 3, so a(3) = a(4) = 11.
		

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, p. 39, section II.1.3.a.

Crossrefs

Equals A058198(n) - 1.

Programs

  • Haskell
    import Data.List (findIndex)
    import Data.Maybe (fromJust)
    a058197 n = (+ 1) $ fromJust $ findIndex (n <=) $ tail a051950_list
    -- Reinhard Zumkeller, Feb 04 2013
  • Mathematica
    d[m_] := d[m] = DivisorSigma[0, m]; td = Table[d[m] - d[m-1], {m, 2, 6000}]; a[n_] := Position[td, j_ /; j >= n, 1][[1, 1]]; Table[a[n], {n, Max[td]}] (* Jean-François Alcover, Nov 02 2011 *)
    With[{d=Differences[DivisorSigma[0,Range[5100]]]},Flatten[Table[ Position[ d,?(#>=n&),{1},1],{n,50}]]] (* _Harvey P. Dale, Oct 02 2015 *)

Formula

A051950(a(n) + 1) <= n. - Reinhard Zumkeller, Feb 04 2013

Extensions

More terms from James Sellers, Nov 29 2000

A058199 Where d(m) (number of divisors, A000005) falls by at least n.

Original entry on oeis.org

4, 6, 12, 12, 24, 30, 36, 60, 60, 60, 120, 120, 120, 180, 180, 180, 240, 240, 360, 360, 360, 420, 720, 720, 720, 720, 840, 840, 840, 1260, 1260, 1260, 1680, 1680, 1680, 1680, 1680, 2160, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 5040, 5040, 5040
Offset: 1

Views

Author

N. J. A. Sloane, Nov 28 2000

Keywords

Comments

In the first 500 entries, only 3 entries (1, 2, and 25200) of A002182 are missed. - Bill McEachen, Nov 05 2020
a(n) exists for all n (Turán, 1954). - Amiram Eldar, Apr 13 2024

Examples

			d(12) = 6, d(13) = 2 gives first drop of >= 3, so a(3) = a(4) = 12.
		

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, p. 39, section II.1.3.a.

Crossrefs

Programs

  • Haskell
    import Data.List (findIndex)
    import Data.Maybe (fromJust)
    a058199 n = fromJust $ findIndex (n <=) $ map negate a051950_list
    -- Reinhard Zumkeller, Feb 04 2013
  • Mathematica
    max = 10^4; dd = Differences[Table[DivisorSigma[0, m], {m, 1, max}]]; a[n_] := Position[dd, d_ /; d <= -n, 1, 1][[1, 1]]; Table[a[n], {n, 1, -Min[dd] }] (* Jean-François Alcover, Nov 23 2015 *)

Formula

A051950(a(n) + 1) <= - n. - Reinhard Zumkeller, Feb 04 2013

Extensions

More terms from James Sellers, Nov 29 2000
Showing 1-3 of 3 results.