A071349
Numbers k for which the GCD of the k-th primorial number and its totient (A058250) sets record.
Original entry on oeis.org
1, 2, 4, 5, 9, 10, 15, 16, 17, 23, 27, 28, 35, 39, 40, 41, 43, 49, 56, 57, 61, 62, 64, 66, 69, 72, 73, 76, 77, 91, 92, 96, 97, 102, 103, 104, 107, 111, 114, 117, 119, 127, 128, 137, 139, 143, 146, 150, 154, 155, 166, 171, 181, 182, 186, 195, 196, 201, 208, 214, 215
Offset: 1
-
q[n_] := Product[Prime[i], {i, 1, n}]; fq[n_] := Product[Prime[i] - 1, {i, 1, n}];
a=0; Do[s=GCD[q[n], fq[n]]; If[s>a, a=s; Print[n]], {n, 1, 1000}]
A071350
Distinct values of A058250; these terms appear first at subscripts listed in A071349.
Original entry on oeis.org
1, 2, 6, 30, 330, 2310, 53130, 690690, 20030010, 821230410, 13960916970, 739928599410, 27377358178170, 2272320728788110, 97709791337888730, 8696171429072096970, 165227257152369842430, 18670680058217792194590
Offset: 1
-
Prepend[FoldList[Times,DeleteDuplicates[Rest[Flatten[FactorInteger[#][[All, 1]]&/@(Prime[Range[100]]-1)]]]],1] (* Jamie Morken, Apr 27 2021 after Harvey P. Dale at A112037, May 26 2019 *)
-
f(n) = my(pr=prod(k=1, n, prime(k))); gcd(pr, eulerphi(pr)); \\ A058250
lista(nn) = Set(vector(nn, k, f(k))); \\ Michel Marcus, Apr 27 2021
A038110
Numerator of frequency of integers with smallest divisor prime(n).
Original entry on oeis.org
1, 1, 1, 4, 8, 16, 192, 3072, 55296, 110592, 442368, 13271040, 477757440, 19110297600, 802632499200, 1605264998400, 6421059993600, 12842119987200, 770527199232000, 50854795149312000, 3559835660451840000
Offset: 1
a(10) = 110592 = ( 1*2*4*6*10*12*16*18*22 ) / ( 2*3*5*11 ).
- Robert Israel, Table of n, a(n) for n = 1..278
- Frank Ellermann, Illustration for A002110, A005867, A038110, A060753
- Fred Kline and Gerry Myerson, Identity for frequency of integers with smallest prime(n) divisor, Mathematics Stack Exchange question
- Vladimir Shevelev, Generalized Newman phenomena and digit conjectures on primes, Int'l J. Math. and Math. Sci. (2008) Art. ID 908045, 1-12. See Eq. (5.8).
- Jonathan Sondow and Eric Weisstein, Euler Product, World of Mathematics
- Wikipedia, Mertens' theorems
-
N:= 100: # for a(1) to a(N)
Q:= 1: p:= 1:
for n from 1 to N do
p:= nextprime(p);
A[n]:= numer(Q);
Q:= Q * (1 - 1/p);
end:
seq(A[n],n=1..N); # Robert Israel, Jul 14 2014
-
Numerator@Table[ Product[ 1-1/Prime[ k ], {k, n-1} ]/Prime[ n ], {n, 64} ]
(* Wouter Meeussen *)
Numerator@Table[ Product[ 1 - 1/Prime[ k ], {k, n-1}], {n, 64} ]
(* Jonathan Sondow, Jan 31 2014 *)
Numerator@
Table[EulerPhi[Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n] - 1}]]]/
Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n]}]], {n, 21}]
(* Fred Daniel Kline, Jul 14 2014 *)
-
a(n) = numerator(prod(k=1, n-1, (1 - 1/prime(k)))); \\ Michel Marcus, Aug 05 2019
A286941
Irregular triangle read by rows: the n-th row corresponds to the totatives of the n-th primorial, A002110(n).
Original entry on oeis.org
1, 1, 5, 1, 7, 11, 13, 17, 19, 23, 29, 1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209
Offset: 1
The triangle starts
1;
1, 5;
1, 7, 11, 13, 17, 19, 23, 29;
1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209;
Cf.
A002110,
A005867,
A048862,
A057588,
A279864,
A286941,
A286942,
A309497,
A038110,
A058250,
A329815.
-
Table[Function[P, Select[Range@ P, CoprimeQ[#, P] &]]@ Product[Prime@ i, {i, n}], {n, 4}] // Flatten (* Michael De Vlieger, May 18 2017 *)
-
row(n) = my(P=factorback(primes(n))); select(x->(gcd(x, P) == 1), [1..P]); \\ Michel Marcus, Jun 02 2020
A309497
Irregular triangle read by rows: T(n,k) = A060753(n)*k-A038110(n)*A286941(n,k).
Original entry on oeis.org
0, 1, 2, 1, 11, 2, 1, 8, 7, 14, 13, 4, 27, -18, 1, 4, 23, 26, 13, 32, 19, 22, 41, 44, 31, 18, 37, 24, 27, 46, 33, 36, 23, -6, -3, 16, 19, 38, 41, 12, -1, 2, -11, 8, 11, -2, 17, 4, -9, -6, 13, 16, 3, 22, 9, 12, 31, 34, 53, 8
Offset: 0
The triangle starts:
row1: 0;
row2: 1;
row3: 2, 1;
row4: 11, 2, 1, 8, 7, 14, 13, 4;
row5: 27, -18, 1, 4, 23, 26, 13, 32, 19, 22, 41, 44, 31, 18, 37, 24, 27, 46, 33, 36, 23, -6, -3, 16, 19, 38, 41, 12, -1, 2, -11, 8, 11, -2, 17, 4, -9, -6, 13, 16, 3, 22, 9, 12, 31, 34, 53, 8;
Cf.
A058250,
A005867,
A002110,
A038110,
A038111,
A060753,
A286941,
A058262,
A161527,
A083140,
A308121.
-
row[0] = 0; row[n_] := -(v = Numerator[Product[1 - 1/Prime[i], {i, 1, n}] / Prime[n]] * Select[Range[(p = Product[Prime[i], {i, 1, n}])], CoprimeQ[p, #] &]) + Denominator[Product[((pr = Prime[i]) - 1)/pr, {i, 1, n}]] * Range[Length[v]]; Table[row[n], {n, 0, 4}] // Flatten (* Amiram Eldar, Aug 10 2019 *)
A161527
Numerators of cumulative sums of rational sequence A038110(k)/A038111(k).
Original entry on oeis.org
1, 2, 11, 27, 61, 809, 13945, 268027, 565447, 2358365, 73551683, 2734683311, 112599773191, 4860900544813, 9968041656757, 40762420985117, 83151858555707, 5085105491885327, 341472595155548909, 24295409051193284539, 1777124696397561611347
Offset: 1
-
Numerator[Table[1 - Product[1 - (1/Prime[k]), {k,1,n}], {n,1,20}]]
-
r(n) = prod(k=1, n-1, (1 - 1/prime(k)))/prime(n);
a(n) = numerator(sum(k=1, n, r(k))); \\ Michel Marcus, Jun 08 2019
A335334
Sum of the integers in the reduced residue system of A002110(n).
Original entry on oeis.org
1, 6, 120, 5040, 554400, 86486400, 23524300800, 8045310873600, 4070927302041600, 3305592969257779200, 3074201461409734656000, 4094836346597766561792000, 6715531608420337161338880000, 12128250084807128913378017280000
Offset: 1
For n = 3: A002110(3) = 30, the reduced residue system of 30 is {1, 7, 11, 13, 17, 19, 23, 29}. The sum is a(3) = 120.
-
n = 15;
A002110 = Drop[FoldList[Times, 1, Prime[Range[n]]], 1];
A005867 = Drop[EulerPhi@FoldList[Times, 1, Prime@Range@n], 1];
A002110*A005867/2
(* Second program: *)
Map[# EulerPhi[#]/2 &, FoldList[Times, Prime@ Range@ 14]] (* Michael De Vlieger, Apr 07 2021 *)
-
a(n) = my(P=factorback(primes(n))); P*eulerphi(P)/2; \\ Michel Marcus, Jun 02 2020
A307388
Length of the period of decimal representation of Product_{k=1..n} A038111(k)/A038110(k).
Original entry on oeis.org
1, 27, 729, 59049, 43046721, 31381059609, 68630377364883, 150094635296999121, 328256967394537077627, 717897987691852588770249, 4710128697246244834921603689, 92709463147897837085761925410587, 3649600726280146254718103955713167842
Offset: 9
For example for n=9 with (2/1) * (6/1) * (15/1) * (105/4) * (385/8) * (1001/16) * (17017/192) * (323323/3072) * (7436429/55296) = 2759414170256180364552625 / 154618822656 = 17846560482454.30745852273604315188195970323350694444444444444... so a(9) = 1.
-
Primorial[n_] := Times @@ Prime[Range[n]]
ClearAll[iter]
ClearAll[fracPer, vp];
(*p-adic order*)
vp[p_?PrimeQ, n_Integer] :=
Length@NestWhileList[#/p &, n/p, IntegerQ] - 1;
(*fraction decimal expansion period*)
fracPer[q_Integer] := 0;
fracPer[q_Rational] := Module[{den, p2, p5}, den = Denominator[q];
p2 = vp[2, den];
p5 = vp[5, den];
den = den/2^p2/5^p5;
If[den == 1, 0, MultiplicativeOrder[10, den]]];
iter[{periods_, frac_, n_}] := {{periods, fracPer[#]}, #, n + 1} &[
frac*Primorial[n]/EulerPhi[Primorial[Max[1, n - 1]]]];
Flatten@First@
Nest[iter, {0, Primorial[0]/EulerPhi[Primorial[0]], 0}, 50]
Showing 1-8 of 8 results.
Comments