cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A119033 Triangular numbers composed of digits {0,1,2}.

Original entry on oeis.org

1, 10, 21, 120, 210, 2211, 10011, 20100, 112101, 222111, 2001000, 22221111, 110120220, 122000010, 200010000, 1210000221, 2222211111, 12001110201, 20000100000, 122021211021, 222222111111, 2000001000000, 12201101000011, 22222221111111, 200000010000000
Offset: 1

Views

Author

Giovanni Resta, May 10 2006

Keywords

Comments

Cross-references to similar sequences:
012 A119033 013 A119035 014 A119037 015 A119039 016 A119041
017 A119043 018 A119045 019 A119047 023 A119049 024 A218390
025 A119051 026 A119053 027 A218397 028 A119055 029 A119057
034 A119059 035 A119061 036 A119063 037 A119065 038 A119067
039 A119069 045 A119071 046 A119073 047 A218399 048 A119075
049 A119077 056 A119079 057 A119081 058 A119083 059 A119085
067 A119087 068 A119089 069 A119091 078 A119093 079 A218401
089 A119095 123 A119097 124 A119099 125 A119101 126 A119103
127 A119105 128 A119107 129 A119109 134 A119111 135 A119113
136 A119115 137 A119117 138 A119119 139 A119121 145 A119123
146 A119125 147 A079654 148 A119128 149 A119130 156 A119132
157 A119134 158 A119136 159 A119138 167 A119140 168 A119142
169 A119144 178 A119146 179 A119148 189 A119150 234 {3}
235 A119152 236 A119154 237 {3} 238 A119156 239 {3}
245 A119158 246 A119160 247 { } 248 A119162 249 { }
256 A119164 257 A119166 258 A119168 259 A119170 267 A119172
268 A119174 269 A119176 278 A119178 279 { } 289 A119180
345 A119182 346 A119184 347 {3} 348 {3} 349 {3}
356 A119186 357 A119188 358 A119190 359 A119192 367 A119194
368 A119196 369 A119198 378 A119200 379 {3} 389 {3}
456 A119202 457 A119204 458 A119206 459 A119208 467 A119210
468 A119212 469 A119214 478 A119216 479 { } 489 { }
567 A119218 568 A119220 569 A119222 578 A119224 579 A119226
589 A119228 678 A119230 679 A119232 689 A119234 789 A119236
Entries marked "{ }" correspond to empty sequences: for every triangular number t, the residue t mod 100 contains at least one digit other than the three specified digits.
Entries marked "{3}" correspond to sequences containing only the single term 3: for every triangular number t != 3, the residue t mod 100 contains at least one digit other than the three specified digits.
(Proof: No triangular number ends in 2, 4, 7, or 9; every triangular number ending in 8 ends in 28 or 78; every triangular number ending in 3, other than the single-digit triangular number 3, ends in 03 or 53.) [Edited by Jon E. Schoenfield, May 02 2023]
Note that the first 36 sequences that are listed above do not contain "0" as the first term although 0 is a triangular number. In other words, sequences focus on the positive triangular numbers. - Altug Alkan, May 02 2016
a(n) == 1 or a(n) == 0 (mod 10). - Chai Wah Wu, Nov 30 2018

Crossrefs

Cf. A213516 (triangular numbers having only two different digits).

Programs

  • Magma
    [t: n in [1..2*10^7] | Set(Intseq(t)) subset {0,1,2} where t is n*(n+1) div 2]; // Vincenzo Librandi, Dec 18 2015
    
  • Mathematica
    Rest[Select[FromDigits/@Tuples[{0, 1, 2}, 10], IntegerQ[(Sqrt[8 # + 1] - 1)/2] &]] (* Vincenzo Librandi, Dec 18 2015 *)
  • PARI
    isok(n) = ispolygonal(n, 3) && (vecmax(digits(n)) <= 2); \\ Michel Marcus, Dec 18 2015

Formula

a(n) = A000217(A119034(n)). - Tyler Busby, Mar 31 2023

Extensions

a(24)-a(25) from Vincenzo Librandi, Dec 18 2015

A277959 Numbers k such that 2 is the largest decimal digit of k^2.

Original entry on oeis.org

11, 101, 110, 149, 1001, 1010, 1011, 1100, 1101, 1490, 10001, 10010, 10011, 10100, 10110, 11000, 11001, 11010, 14499, 14900, 100001, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101100, 110000, 110001, 110010, 110100, 144990, 149000, 316261
Offset: 1

Views

Author

Colin Barker, Nov 06 2016

Keywords

Comments

The terms > 1 of A058411 can be considered as primitive elements of this sequence, obtained by multiplying those by powers of 10 (cf. formula). These terms of A058411 have at least 2 nonzero digits, and therefore their square has at least one digit 2. - M. F. Hasler, Nov 15 2017

Crossrefs

Cf. A277946 (the squares); A277960, A277961, A295005, ..., A295009 (analog for largest digit 3, 4, 5, ..., 9).
Cf. A058411, A058412 and A058413, ..., A058474. (Similar but no trailing 0's allowed.)
Cf. A136808 and A136809, ..., A137147 for other digit combinations. (Numbers must satisfy the same restriction as their squares.)

Programs

  • Mathematica
    Select[Range[4*10^5], And[#[[2]] > 0, Union@ Take[RotateLeft[#, 2], 7] == {0}] &@ DigitCount[#^2] &] (* Michael De Vlieger, Nov 16 2017 *)
  • PARI
    L=List(); for(n=1, 10000, if(vecmax(digits(n^2))==2, listput(L, n))); Vec(L)
    
  • PARI
    A277959(LIM=1e15, L=List(), N=1)={while(LIM>N=next_A058411(N),my(t=N); until(LIMM. F. Hasler, Nov 15 2017

Formula

Equals (A058411 \ {1})*A011557, where A011557 = { 10^k; k >= 0 }. - M. F. Hasler, Nov 16 2017

Extensions

Edited by M. F. Hasler, Nov 16 2017

A136808 Numbers k such that k and k^2 use only the digits 0, 1 and 2.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1011, 1100, 1101, 10000, 10001, 10010, 10011, 10100, 10110, 11000, 11001, 11010, 100000, 100001, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101100, 110000, 110001, 110010, 110100, 1000000, 1000001, 1000010, 1000011, 1000100
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.
Subsequence of A136809, A136816, ..., A136836. - M. F. Hasler, Jan 24 2008
A278038(18) = 10101, A136827(294) = 10110001101, A136831(1276) = 101100010001101 resp. A136836(1262) = 101090009991101 are the first terms from where on these four sequences differ from the present one. - M. F. Hasler, Nov 15 2017
From Jovan Radenkovicc, Nov 15 2024: (Start)
A nonnegative integer n is in this sequence iff 10*n is also in this sequence.
Not a subsequence of A278038 (binary numbers without '111'). A counterexample is 10^2884 + 10^2880 + 10^2872 + 10^2857 + 10^2497 + 10^2426 + 10^2285 + 10^2004 + 10^1443 + 10^1442 + 10^1441 + 10^881 + 10^600 + 10^459 + 10^388 + 10^27 + 10^12 + 10^4 + 1. There are infinitely many counterexamples not divisible by 10. This counterexample follows from the fact that 111^2+2000*4+200*4=12321+8000+800=21121. In fact, every binary substring will eventually occur in this sequence. Also, if n is a term containing only the digits 0 and 1, then 10^k*n+1 and n+10^k are also in this sequence for any sufficiently large integer k. (End)

Examples

			101000100100001^2 = 10201020220210222010200200001.
		

Crossrefs

A subsequence of the binary numbers A007088.
Cf. A278038.
Cf. A136809, A136810, ..., A137147 for other digit combinations.
See also A058412 = A058411^2: squares having only digits {0,1,2}, A277946 = A277959^2 = squares whose largest digit is 2.

Programs

  • Maple
    isA136808 := proc(n) local ndgs,n2dgs ; ndgs := convert(convert(n,base,10),set) ; n2dgs := convert(convert(n^2,base,10),set) ; if ( (ndgs union n2dgs) minus {0,1,2} ) = {} then true ; else false ; fi ; end: LtonRev := proc(L) local i ; add(op(i,L)*10^(i-1),i=1..nops(L)) ; end: A007089 := proc(n) convert(n,base,3) ; LtonRev(%) ; end: n := 1: for i from 0 do n3 := A007089(i) ; if isA136808(n3) then printf("%d %d ",n,n3) ; n := n+1 ; fi ; od: # R. J. Mathar, Jan 24 2008
  • Mathematica
    Select[FromDigits/@Tuples[{0,1},7],Union[Take[DigitCount[#^2],{3,9}]]=={0}&] (* Harvey P. Dale, May 29 2013 *)
  • PARI
    for(n=1,999,vecmax(digits((N=fromdigits(binary(n),10))^2))<3 && print1(N",")) \\ M. F. Hasler, Nov 15 2017

A058411 Numbers k such that k^2 contains only digits {0,1,2}, not ending with zero.

Original entry on oeis.org

1, 11, 101, 149, 1001, 1011, 1101, 10001, 10011, 11001, 14499, 100001, 100011, 100101, 101001, 110001, 316261, 1000001, 1000011, 1000101, 1010001, 1010011, 1100001, 1100101, 10000001, 10000011, 10000101, 10001001, 10001011, 10001101, 10010001, 10100001, 10100011, 10110001
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Comments

Sporadic solutions (not consisting only of digits 0 and 1): a(4) = 149, a(11) = 14499, a(17) = 316261, a(209) = 4604367505011, a(715) = 10959977245460011, a(1015) = 110000500908955011, a(1665) = 10099510939154979751, ... Three infinite subsequences are given by numbers of the form 10...01, 10...011 and 110...01, but there are many others. - M. F. Hasler, Nov 14 2017
From Zhao Hui Du, Mar 12 2024: (Start)
Most terms have a special pattern in that they have only digits 0 and 1 and could be written as Sum_{h=0..t} 10^x(h), where 2x(h) and x(h1)+x(h2) are distinct and x(0)=0 for the nonzero ending constraint. The number of n-digit terms in the sequence in the special pattern is A143823(n) - 2*A143823(n-1) + A143823(n-2) for n >= 2.
Terms with only digits 0 and 1 but not in the special pattern exist as well. If we define f(x) = 1 + x^768 + x^960 + x^1008 + x^1020 + x^1028 + x^1040 + x^1088 + x^1280 + x^2048, f(x)^2 is a function with all nonzero coefficients 1,2,10 (the only coefficient of x^2048 is 10 and the coefficient of x^2049 is 0). So f(10) is in the sequence but not in the special pattern. (End)

Crossrefs

Cf. A058412 (the squares); A058412, ..., A058474 (other 3-digit combinations).
Cf. A063009, A066139. - Zak Seidov, Jul 01 2013

Programs

  • Magma
    [n: n in [1..2*10^8 by 2] | Set(Intseq(n^2)) subset [0,1,2]]; // Vincenzo Librandi, Feb 24 2016
  • Maple
    R[1]:= {1,9};
    for m from 2 to 10 do
      R[m]:= select(t -> max(convert(t^2 mod 10^m, base, 10)) <= 2, map(s -> seq(s + i*10^(m-1),i=0..9), R[m-1]))
    od:
    Res:= {seq(op(select(t -> t >= 10^(m-1) and max(convert(t^2,base,10)) <= 2, R[m])),m=1..10)}:
    sort(convert(Res,list)); # Robert Israel, Feb 23 2016
  • Mathematica
    Select[Range[10^6], And[Total@ Take[RotateRight@ DigitCount@ #, -7] == 0, Mod[#, 10] != 0] &[#^2] &] (* Michael De Vlieger, Nov 14 2017 *)
  • PARI
    isok(n)={ n%10 && vecmax(digits(n^2)) < 3 } \\ Michel Marcus, Feb 24 2016, edited by M. F. Hasler, Nov 14 2017
    
  • Python
    A058411_list = [i for i in range(10**6) if i % 10 and max(str(i**2)) < '3'] # Chai Wah Wu, Feb 23 2016
    

Formula

a(n) = sqrt(A058412(n)). - Zak Seidov, Jul 01 2013

Extensions

b-file corrected by Zhao Hui Du, Mar 07 2024

A277948 Squares whose largest decimal digit is 4.

Original entry on oeis.org

4, 144, 324, 400, 441, 1024, 1444, 2304, 2401, 10404, 14400, 23104, 32041, 32400, 33124, 40000, 40401, 44100, 101124, 102400, 103041, 110224, 114244, 121104, 131044, 144400, 203401, 204304, 213444, 230400, 232324, 240100, 300304, 301401, 421201, 1004004
Offset: 1

Views

Author

Colin Barker, Nov 05 2016

Keywords

Comments

A subsequence of A158082, in turn a subsequence of A000290.

Crossrefs

Cf. A000290 (the squares).
Cf. A277961 (square roots of these terms).
Cf. A277946, A277947, A295015, ..., A295019 (analog for largest digit = 2, 3, 5, ..., 9).
Cf. A058412, A058411, ..., A058474 and A136808, A136809, ..., A137147 for other restrictions on digits of squares.

Programs

  • Magma
    [n^2: n in [1..1000000] | Maximum(Intseq(n^2)) eq 4]; // Vincenzo Librandi, Nov 06 2016
  • Mathematica
    Select[Range[1100]^2,Max[IntegerDigits[#]]==4&] (* Harvey P. Dale, Jul 01 2017 *)
  • PARI
    L=List(); for(n=1, 10000, if(vecmax(digits(n^2))==4, listput(L, n^2))); Vec(L)
    

Formula

a(n) = A277961(n)^2. - M. F. Hasler, Nov 12 2017
Intersection of A000290 and A277966. - M. F. Hasler, Nov 15 2017

A030175 When squared gives number composed of digits {1,2,3}.

Original entry on oeis.org

1, 11, 111, 36361, 363639, 461761, 3636361, 34815389, 362397739, 176412364139, 57637950363639, 3497458093147239, 56843832676142723489, 557963558954625926861
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A136808, A136809, ..., A137147: n and n^2 have digits {...}.
Cf. A277959^2 = A277946 and A277960^2 = A277947: squares whose largest digit is 2 resp. 3.

Programs

  • Mathematica
    Do[ If[ Union[ Join[{1, 2, 3}, IntegerDigits[n^2] ] ] == {1, 2, 3}, Print[n] ], {n, 0, 10^9}]
  • PARI
    lista(nn) = for(n=1, nn, if(setminus(vecsort(digits(n^2), , 8), [1, 2, 3])==[], print1(n, ", "))) \\ Iain Fox, Nov 16 2017

Formula

a(n)^2 = A030174(n). - M. F. Hasler, Nov 16 2017

Extensions

More terms from Patrick De Geest, Mar 01 2000
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 14 2005
Offset corrected by Iain Fox, Nov 16 2017

A136836 Numbers k such that k and k^2 use only the digits 0, 1, 2 and 9.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1011, 1100, 1101, 10000, 10001, 10010, 10011, 10100, 10110, 11000, 11001, 11010, 100000, 100001, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101100, 110000, 110001, 110010, 110100, 1000000, 1000001, 1000010, 1000011, 1000100
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.
Comparison of b-files indicates that the first difference from A136831 is at the 1262nd entry. - R. J. Mathar Apr 29 2008
More precisely, A278038(18) = 10101, A136827(294) = 10110001101 resp. A136808(1262) = A136831(1262) = 101100000000000 are the first terms from where on these four sequences differ from the present one; a(1262) = 101090009991101 is also the first term containing a digit > 1. - M. F. Hasler, Nov 15 2017

Examples

			101090009991101^2 = 10219190120000900002099192201.
		

Crossrefs

Cf. A136808, A136809, A136810, ..., A137147 for other digit combinations.
See also A058412 = A058411^2: squares having only digits {0,1,2}, A277946 = A277959^2 = squares whose largest digit is 2.
The first 1261 terms are also a subsequence of A278038 (binary numbers without '111'), in turn a subsequence of the binary numbers A007088.

Programs

  • Mathematica
    With[{c={0,1,2,9}},Select[FromDigits/@Tuples[c,7],SubsetQ[c,IntegerDigits[#^2]]&]] (* Harvey P. Dale, Feb 11 2024 *)

A136812 Numbers k such that k and k^2 use only the digits 0, 1, 2, 3 and 6.

Original entry on oeis.org

0, 1, 6, 10, 11, 60, 100, 101, 106, 110, 111, 361, 600, 601, 1000, 1001, 1006, 1010, 1011, 1060, 1100, 1101, 1106, 1110, 1631, 3606, 3610, 6000, 6001, 6010, 6011, 10000, 10001, 10006, 10010, 10011, 10060, 10100, 10101, 10106, 10110, 10111, 10301, 10306, 10600, 11000, 11001, 11006, 11010, 11060, 11100, 11101, 16310, 32111, 36060, 36100, 36361
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.

Examples

			1031316261^2 = 1063613230203020121.
		

Crossrefs

Cf. A136808, ..., A137147.
Showing 1-8 of 8 results.