A059169 Number of partitions of n into 3 parts which form the sides of a nondegenerate isosceles triangle.
0, 0, 1, 0, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 6, 7, 7, 8, 7, 8, 8, 9, 8, 9, 9, 10, 9, 10, 10, 11, 10, 11, 11, 12, 11, 12, 12, 13, 12, 13, 13, 14, 13, 14, 14, 15, 14, 15, 15, 16, 15, 16, 16, 17, 16, 17, 17, 18, 17, 18, 18, 19, 18, 19, 19, 20, 19, 20, 20
Offset: 1
Examples
Consider the number 13. The following partitions give a nondegenerate triangle: 4 4 5; 3 5 5; 1 6 6; 2 5 6; 3 4 6. Since the first three partitions represent isosceles triangles, we have A059169(13) = 3. G.f. = x^3 + x^5 + x^6 + 2*x^7 + x^8 + 2*x^9 + 2*x^10 + 3*x^11 + 2*x^12 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Haskell
a059169 n = a059169_list !! (n-1) a059169_list = map abs $ zipWith (-) (tail a178804_list) a178804_list -- Reinhard Zumkeller, Nov 15 2014
-
Magma
[Floor((n-1)/2) - Floor(n/4): n in [1..80]]; // G. C. Greubel, Mar 08 2018
-
Maple
a[1] := 0: a[2] := 0: a[3] := 1: a[4] := 0: a[5] := 1: for n from 6 to 300 do a[n] := a[n-1] + a[n-4] - a[n-5]: end do: seq(a[n], n=1..82); a := n -> A005044(n) - A005044(n-6): A005044 := n-> floor((1/48)*(n^2 + 3*n + 21 + (-1)^(n-1)*3*n)): seq(a(n), n = 1..82); # Johannes W. Meijer, Oct 10 2013
-
Mathematica
CoefficientList[Series[x^2 (1 - x + x^2)/(1 - x - x^4 + x^5), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 15 2013 *) LinearRecurrence[{1,0,0,1,-1},{0,0,1,0,1},100] (* Harvey P. Dale, Feb 09 2015 *) a[ n_] := Quotient[ n - 1, 2] - Quotient[ n, 4]; (* Michael Somos, May 05 2015 *)
-
PARI
{a(n) = (n - 1) \ 2 - (n \ 4)}; /* Michael Somos, Oct 14 2008 */
-
PARI
{a(n) = if( n<1, -a(3 - n), polcoeff( x^3 * (1 - x + x^2) / (1 - x - x^4 + x^5) + x * O(x^n), n))}; /* Michael Somos, Oct 14 2008 */
Formula
a(2*n + 2) = a(2*n - 1) = A004526(n).
From Vladeta Jovovic, Dec 29 2001: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5).
G.f.: x^3*(1 - x + x^2)/(1 - x - x^4 + x^5). (End)
The g.f. can also be written as x^3 * (1 + x^3) / ((1 - x^2) * (1 - x^4)). - Michael Somos, May 05 2015
Euler transform of length 6 sequence [0, 1, 1, 1, 0, -1]. - Michael Somos, Oct 14 2008
a(n) = -a(3 - n) for all n in Z. - Michael Somos. Oct 14 2008
a(n) = abs(floor((n-1)*(-1)^n/4)). - Wesley Ivan Hurt, Oct 22 2013
a(n) = floor(n/2) - floor(n/4) - (1 if n even). - David Pasino, Jun 17 2016
E.g.f.: (4 - sin(x) - cos(x) + x*sinh(x) + (x - 3)*cosh(x))/4. - Ilya Gutkovskiy, Jun 21 2016
a(n) = floor((n-1)/2) - floor(n/4), n >= 0 (from the preceding a(n) formula). - Wolfdieter Lang, May 08 2017
a(n) = (2*n - 3 - 2*cos(n*Pi/2) - 3*cos(n*Pi) - 2*sin(n*Pi/2))/8. - Wesley Ivan Hurt, Oct 01 2017
a(n) = Sum_{i=1..floor((n-1)/2)} (n-i-1) mod 2. - Wesley Ivan Hurt, Nov 17 2017
Extensions
More terms from Sascha Kurz, Mar 25 2002
Comments