cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A244640 a(n) is the number of 2-partitions of the set of primes less than A059756(n) that demonstrate that A059756(n) is prime-partitionable.

Original entry on oeis.org

2, 4, 4, 16, 16, 16, 8, 192, 240, 128, 512, 36, 24, 224, 96, 896
Offset: 1

Views

Author

Keywords

Comments

The sequence comprises the number of all possible partitions {P1,P2} for which each n is prime-partitionable.

Examples

			Consider the first prime-partitionable number, A059756(1) = 16.
We have P = {2, 3, 5, 7, 11, 13}.
a(1) = 2 because the 2-partitions of P for which 16 is prime-partitionable are:
    P1a = {2, 5, 11},       P2a = {3, 7, 13}
    P1b = {2, 3, 7, 13},    P2b = {5, 11}
as is shown below:
       n1   n2   p1a   p2a      p1b   p2b
        1 + 15     -     3        -     5
        2 + 14     2     7        2     -
        3 + 13     -    13        3     -
        4 + 12     2     3        2     -
        5 + 11     5     -        -    11
        6 + 10     2     -        2     5
        7 +  9     -     3        7     -
        8 +  8     2     -        2     -
        9 +  7     -     7        3     -
       10 +  6     2     3        2     -
       11 +  5    11     -        -     5
       12 +  4     2     -        2     -
       13 +  3     -     3       13     -
       14 +  2     2     -        2     -
       15 +  1     5     -        3     -
		

Crossrefs

Cf. A059756.

Programs

  • Maple
    Derived from the program provided by Richard J. Mathar in the second link.
    ppartabl := proc (n)
      local i, j, pless, p1, p2, n1, n2, pset1, pset2, alln1n2done, foundp1p2;
      # construct set of primes < n in pless.
      pless := {};
      for i from 2 to n-1 do
        if isprime(i) then
          pless := `union`(pless, {i});
        end if;
      end do;
      # loop over all nontrivial (nonempty) subsets of the primes, P1.
      j := 0;
      for pset1 in combinat[choose](pless) do
        if 1 <= nops(pset1) then
          if pset1 = pset2 then
            break;
          end if;
          # P2 is P \ P1.
          pset2 := `minus`(pless, pset1);
          # flag to indicate that for each n1,n2 we found a pair.
          alln1n2done := true;
          for n1 to n-1 do
            n2 := n-n1;
            # flag that we found a (p1,p2).
            foundp1p2 := false;
            for p1 in pset1 do
              if igcd(n1, p1) <> 1 then
                foundp1p2 := true;
                break;
              end if;
              for p2 in pset2 do
                if igcd(n2, p2) <> 1 then
                  foundp1p2 := true;
                  break;
                end if;
              end do:
              if foundp1p2 = true then
                break;
              end if;
            end do:
            if foundp1p2 = false then
              alln1n2done := false;
              break;
            end if;
          end do:
          if alln1n2done = true then
            j := j+1;
            if j = 1 then
              printf("%d\n", n);
            end if;
            print(j, pset1, pset2);
          end if;
        end if;
      end do:
    end proc:
    L := [16, 22, 34, 36, 46, 56, 64, 66, 70, 76, 78, 86, 88, 92,
          94, 96];
    for i from 1 to 16 do
      ppartabl(L[i]);
    end do:

A059757 Initial terms of smallest Erdős-Woods intervals corresponding to the terms of A059756.

Original entry on oeis.org

2184, 3521210, 47563752566, 12913165320, 21653939146794, 172481165966593120, 808852298577787631376, 91307018384081053554, 1172783000213391981960, 26214699169906862478864, 27070317575988954996883440, 92274830076590427944007586984, 3061406404565905778785058155412
Offset: 1

Views

Author

Nik Lygeros (webmaster(AT)lygeros.org), Feb 12 2001

Keywords

Comments

The term a(1)=2184 is the start of the lowest interval with an Erdős-Woods interval length of 16 = A059756(1), and the list of others of that length 16 appear to be the same as A194585. - R. J. Mathar, Jul 02 2014

Examples

			For the Erdős-Woods number 16, no number between 2184 and 2184+16 is coprime to both 2184 and 2184+16. 2184 is the smallest such nonnegative integer.
		

Crossrefs

Extensions

a(5)-a(13) corrected by Peter Kagey, Jul 01 2021, based on the Code Golf Stack Exchange link.

A111042 Odd terms of A059756.

Original entry on oeis.org

903, 2545, 4533, 5067, 8759, 9071, 9269, 10353, 11035, 11625, 11865, 13629, 15395, 15493, 16803, 17955, 18575, 18637, 19149, 24189, 35547, 36941, 37911, 42111, 43613, 45179, 50717, 52383, 53367, 54159, 58285, 59903, 61333, 62373, 65109, 67807, 68483, 70109, 72575
Offset: 1

Views

Author

Victor S. Miller, Oct 08 2005

Keywords

Comments

Dowe (1989) conjectured that all Erdős-Woods numbers (A059756) are even. The first counterexamples were found in 2001 by Marcin Bienkowski, Mirek Korzeniowski and Krysztof Lorys, and independently by Nik Lygeros (Cégielski et al., 2003). - Amiram Eldar, Jun 20 2021

Crossrefs

Cf. A059756.

Extensions

Corrected by T. D. Noe, Nov 02 2006
More terms from Felgenhauer added by Amiram Eldar, Jun 20 2021

A245664 Prime-partitionable numbers a(n) for which there exists a 2-partition of the set of primes < a(n) that has one subset containing two primes only.

Original entry on oeis.org

16, 34, 36, 66, 70, 78, 88, 92, 100, 120, 124, 144, 154, 160, 162, 186, 210, 216, 248, 250, 256, 260, 262, 268, 300, 330, 336, 340, 342, 366, 378, 394, 396, 404, 428, 474, 484, 486, 512, 520, 538, 552, 574, 582, 630, 636, 640, 696, 700, 706, 708, 714, 718, 722
Offset: 1

Views

Author

Keywords

Comments

Prime-partitionable numbers are defined in A059756.
To demonstrate that a number is prime-partitionable a suitable 2-partition {P1, P2} of the set of primes < a(n) must be found. In this sequence we are interested in prime-partitionable numbers such that P1 contains 2 odd primes.
Conjecture: If P1 = {p1a, p1b} with p1a and p1b odd primes, p1a < p1b and p1b = 2*k*p1a + 1 for some natural k such that 2*k <= p1a - 3 and if m = p1a + p1b then m is prime-partitionable and belongs to {a(n)}.

Examples

			a(1) = 16 because A059756(1) = 16 and the 2-partition {5, 11}, {2, 3, 7, 13} of the set of primes < 16 demonstrates it.
		

Crossrefs

Programs

  • Maple
    See Gribble links referring to "MAPLE program generating {a(n)}" and "MAPLE program generating 20000 terms of conjectured sequence."
  • PARI
    prime_part(n)=
    {
      my (P = primes(primepi(n-1)));
      for (k1 = 2, #P - 1,
        for (k2 = 1, k1 - 1,
          mask = 2^k1 + 2^k2;
          P1 = vecextract(P, mask);
          P2 = setminus(P, P1);
          for (n1 = 1, n - 1,
            bittest(n - n1, 0) || next;
            setintersect(P1, factor(n1)[,1]~) && next;
            setintersect(P2, factor(n-n1)[,1]~) && next;
            next(2)
          );
          print(n, ", ");
        );
      );
    }
    forstep(m=2,2000,2,prime_part(m));

A244620 Initial terms of Erdős-Wood intervals of length 22.

Original entry on oeis.org

3521210, 6178458, 13220900, 15878148, 22920590, 25577838, 32620280, 35277528, 42319970, 44977218, 52019660, 54676908, 61719350, 64376598, 71419040, 74076288, 81118730, 83775978, 90818420, 93475668, 100518110, 103175358, 110217800, 112875048, 119917490
Offset: 1

Views

Author

R. J. Mathar, Jul 02 2014

Keywords

Comments

By definition of the intervals in A059756, these are numbers that start a sequence of 23 consecutive integers such that none of the 23 integers is coprime to the first and also coprime to the last integer of the interval.
Hence each initial term of an Erdős-Wood interval is the initial term of a stapled interval of length A059756(n) + 1 (see definition in A090318). - Christopher Hunt Gribble, Dec 02 2014

Examples

			3521210 = 2*5*7*11*17*269 and 3521210+22 = 3521232 = 2^4 * 3^4 * 11 * 13 * 19, and all numbers in [3521210,3521232] have at least one prime factor in {2, 3, 5, 7, 11, 13, 17, 19, 269}. Therefore 3521210 is in the list.
		

Crossrefs

Programs

  • Maple
    isEWood := proc(n,ewlength)
        local nend,fsn,fsne,fsall,fsk ;
        nend := n+ewlength ;
        fsn := numtheory[factorset](n) ;
        fsne := numtheory[factorset](nend) ;
        fsall := fsn union fsne ;
        for k from n to nend do
            fsk := numtheory[factorset](k) ;
            if fsk intersect fsall = {} then
                return false;
            end if;
        end do:
        return true;
    end proc:
    for n from 2 do
        if isEWood(n,22) then
            print(n) ;
        end if;
    end do:

Formula

a(1) = A059757(2).
From Christopher Hunt Gribble, Dec 02 2014: (Start)
a(1) = A130173(524).
a(2*n+1) = 3521210 + 9699690*n.
a(2*n+2) = 6178458 + 9699690*n.
a(n) = (-4849867 - 2192597*(-1)^n + 9699690*n)/2.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: (3521232*x^2+2657248*x+3521210) / ((x-1)^2*(x+1)). (End)

Extensions

More terms from Christopher Hunt Gribble, Dec 03 2014

A249302 Prime-partitionable numbers a(n) for which there exists a 2-partition of the set of primes < a(n) that has a smallest subset containing three primes only.

Original entry on oeis.org

22, 130, 222, 246, 280, 286, 288, 320, 324, 326, 356, 416, 426, 454, 470, 494, 516, 528, 556, 590, 612, 634, 670, 690, 738, 746, 804, 818, 836, 838, 870, 900, 902, 904, 922, 936, 1002, 1026, 1074, 1106, 1116, 1140, 1144, 1150, 1206, 1208, 1262, 1264, 1326, 1338
Offset: 1

Views

Author

Keywords

Comments

Prime-partitionable numbers are defined in A059756.
To demonstrate that a number is prime-partitionable a suitable 2-partition {P1, P2} of the set of primes < a(n) must be found. In this sequence we are interested in prime-partitionable numbers such that the smallest P1 contains 3 odd primes.
Conjecture:
If P1 = {p1a, p1b, p1c} with p1a, p1b and p1c odd primes and p1a < p1b < p1c then the union of the integer solutions to the three equation groups below, {{m1}, {m2}, {m3}}, contains all even members of {a(n)}:
m1 = v1*p1a + 1 = v2*p1b + p1a = p1c + p1b
m2 = v3*p1a + 1 = p1b + p1a^2 = p1c + p1a
m3 = v4*p1a + p1b = v5*p1b + 1 = p1c + p1a
where v1, v2, v3, v4 and v5 are odd naturals.

Examples

			a(1) = 22 because A059756(2) = 22 and both the 2-partitions {3, 13, 19}, {2, 3, 11, 13, 19} and {5, 7, 17}, {2, 5, 7, 11, 17} of the set of primes < 22 demonstrate it.
		

Crossrefs

Programs

  • PARI
    prime_part(n)=
    {
      my (P = primes(primepi(n-1)));
      for (k1 = 2, #P - 1,
        for (k2 = 1, k1 - 1,
          for (k3 = 1, k2 - 1,
            mask = 2^k1 + 2^k2 + 2^k3;
            P1 = vecextract(P, mask);
            P2 = setminus(P, P1);
            for (n1 = 1, n - 1,
              bittest(n - n1, 0) || next;
              setintersect(P1, factor(n1)[,1]~) && next;
              setintersect(P2, factor(n-n1)[,1]~) && next;
              next(2)
            );
            print1(n, ", ");
          );
        );
      );
    }
    # PP = {{2x, x = 1:1000} - {A245664(n), 1:145}}
    PP=[2, 4, 6, 8, 10, 12, 14, 18, 20, 22, 24, 26, 28, 30, \
        32, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, \
        ...
        1980, 1984, 1986, 1988, 1990, 1994, 1996, 1998, 2000];
    for(m=1,#PP,prime_part(PP[m]));

A342310 Prime Erdős-Woods numbers.

Original entry on oeis.org

15493, 18637, 43613, 45179, 61333, 67807, 68483, 80671, 87383, 120557, 130349, 138077, 139187, 199373, 341027, 485201, 581869, 598079, 776497, 786931, 790063, 869777, 936709, 943013, 964303, 1085737, 1166153, 1187999, 1192207, 1225517, 1363837, 1392959, 1404419
Offset: 1

Views

Author

Jianing Song, Mar 08 2021

Keywords

Comments

A number k is an Erdős-Woods number (A059756) if there exists m such that for every 0 <= i <= m, at least one of gcd(m+i, m) > 1 or gcd(m+i, m+k) > 1 holds. This sequence gives the prime terms in A059756.

Crossrefs

Subsequence of A059756 and A111042.

Extensions

More terms from Jinyuan Wang, Jan 28 2025

A245372 Prime-partitionable numbers a(n) for which there exists a 2-partition of the set of primes < a(n) that has a smallest subset containing four primes only.

Original entry on oeis.org

46, 76, 96, 106, 134, 142, 146, 204, 218, 276, 310, 408, 438, 466, 518, 534, 536, 546, 580, 624, 650, 672, 680, 694, 792, 800, 896, 970, 1000, 1016, 1100, 1160, 1170, 1318, 1344, 1358, 1364, 1384, 1470, 1480
Offset: 1

Views

Author

Keywords

Comments

Prime-partitionable numbers are defined in A059756.
To demonstrate that a number is prime-partitionable a suitable 2-partition {P1, P2} of the set of primes < a(n) must be found. In this sequence we are interested in prime-partitionable numbers such that the smallest P1 contains 4 odd primes.
Conjecture:
If P1 = {p1a, p1b, p1c, p1d} with p1a, p1b, p1c and p1d odd primes and p1a < p1b < p1c < p1d then the union of the integer solutions to the ten equation groups below, {{m1}, {m2}, {m3}, {m4}, {m5}, {m6}, {m7}, {m8}, {m9}, {m10}}, contains all even members of {a(n)}:
m1 = v1*p1a+1 = v2*p1b+p1a = v3*p1c+p1b = v4*p1d+p1c
m2 = v5*p1a+1 = v6*p1b+p1a^2 = v7*p1c+p1b = v8*p1d+p1a
m3 = v9*p1a+1 = v10*p1b+p1a^3 = v11*p1c+p1a^2 = v12*p1d+p1a
m4 = v13*p1a+1 = v14*p1b+p1c = v15*p1c+p1a = v16*p1d+p1b
m5 = v17*p1a+1 = v18*p1b+p1c = v19*p1c+p1a^2 = v20*p1d+p1a
m6 = v21*p1a+p1b = v22*p1b+1 = v23*p1c+p1a = v24*p1d+p1c
m7 = v25*p1a+p1b = v26*p1b+1 = v27*p1c+p1a^2 = v28*p1d+p1a
m8 = v29*p1a+p1b = v30*p1b+p1c = v31*p1c+1 = v32*p1d+p1a
m9 = v33*p1a+p1c = v34*p1b+1 = v35*p1c+p1b = v36*p1d+p1a
m10 = v37*p1a+p1c = v38*p1b+p1a = v39*p1c+1 = v40*p1d+p1b
where the vi, i = 1..40 are constrained odd naturals.

Examples

			a(1) = 46 because A245602(5) = 46 and the 2-partition {3, 19, 37, 43} {2, 5, 7, 11, 13, 17, 23, 29, 31, 41} of the set of primes < 46 demonstrates it.
		

Crossrefs

Programs

  • PARI
    prime_part(n)=
    {
      my (P = primes(primepi(n-1)));
      for (k1 = 2, #P - 1,
        for (k2 = 1, k1 - 1,
          for (k3 = 1, k2 - 1,
            for (k4 = 1, k3 - 1,
              mask = 2^k1 + 2^k2 + 2^k3 + 2^k4;
              P1 = vecextract(P, mask);
              P2 = setminus(P, P1);
              for (n1 = 1, n - 1,
                bittest(n - n1, 0) || next;
                setintersect(P1, factor(n1)[,1]~) && next;
                setintersect(P2, factor(n-n1)[,1]~) && next;
                next(2)
                   );
              print1(n, ", ");
            );
          );
        );
      );
    }
    # PP = {{2x, x = 1:1000} - {A245664(n), n = 1:145}
    #                        - {A249302(n), n = 1:77}}
    PP = [2, 4, 6, 8, 10, 12, 14, 18, 20, 24, 26, 28, 30, 32, \
          38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, \
          ...
          1994, 1996, 1998, 2000];
    for(m=1,#PP,prime_part(PP[m]));

A259301 Taken over all those prime-partitionable numbers m for which there exists a 2-partition of the set of primes < m that has one subset containing two primes only, a(n) is the frequency with which the smaller prime occurs, where n is the prime index.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 3, 2, 4, 4, 3, 4, 5, 7, 8, 5, 8, 7, 8, 9, 10, 10, 11, 12, 12, 14, 13, 13, 12, 15, 14, 14, 17, 14, 19, 17, 12, 18, 13, 19, 20, 22, 20, 23, 21, 15, 21, 21, 23, 25, 26, 23, 26, 26, 19, 23, 27, 24, 29, 27, 26, 28, 31, 29, 30, 25, 30, 29, 34, 30
Offset: 1

Views

Author

Keywords

Comments

A number n is called a prime partitionable number if there is a partition {P1,P2} of the primes less than n such that for any composition n1+n2=n, either there is a prime p in P1 such that p | n1 or there is a prime p in P2 such that p | n2.
To demonstrate that a positive integer m is prime-partitionable, a suitable 2-partition {P1, P2} of the set of primes < m must be found. In this sequence we are interested in prime-partitionable numbers such that P1 contains 2 odd primes.
Conjecture: If P1 = {p1a, p1b} with p1a and p1b odd primes, p1a < p1b and p1b = 2*k*p1a + 1 for some positive integer k such that 2*k <= p1a - 3 and if m = p1a + p1b then m is prime-partitionable.

Examples

			The table below shows all p1a and p1b pairs for p1a <= 29 that demonstrate that m is prime-partitionable.
. n    p1a    p1b     2k      m
. 3      5     11      2     16
. 4      7     29      4     36
. 5     11     23      2     34
.       11     67      6     78
.       11     89      8    100
. 6     13     53      4     66
.       13     79      6     92
.       13    131     10    144
. 7     17    103      6    120
.       17    137      8    154
.       17    239     14    256
. 8     19    191     10    210
.       19    229     12    248
. 9     23     47      2     70
.       23    139      6    162
.       23    277     12    300
.       23    461     20    484
.10     29     59      2     88
.       29    233      8    262
.       29    349     12    378
.       29    523     18    552
By examining the p1a column it can be seen that
a(1) = 0, a(2) = 0, a(3) = 1, a(4) = 1, a(5) = 3, a(6) = 3,
a(7) = 3, a(8) = 2, a(9) = 4, a(10) = 4.
		

Crossrefs

Programs

  • Maple
    # Makes use of conjecture in COMMENTS section.
    ppgen := proc (ub)
      local freq_p1a, i, j, k, nprimes, p1a, p1b, pless;
      # Construct set of primes < ub in pless.
      pless := {};
      for i from 3 to ub do
        if isprime(i) then
          pless := `union`(pless, {i});
        end if
      end do;
      nprimes := numelems(pless);
      # Determine frequency of each p1a.
      printf("0, ");    # For prime 2.
      for j to nprimes do
        p1a := pless[j];
        freq_p1a := 0;
        for k to (p1a-3)/2 do
          p1b := 2*k*p1a+1;
          if isprime(p1b) then
            freq_p1a := freq_p1a+1;
          end if;
        end do;
        printf("%d, ", freq_p1a);
      end do;
    end proc:
    ub := 1000:
    ppgen(ub):

A259560 Primes p such that p = 2kq + 1 for k a positive integer, q an odd prime and 2k <= q - 3.

Original entry on oeis.org

11, 23, 29, 47, 53, 59, 67, 79, 83, 89, 103, 107, 131, 137, 139, 149, 167, 173, 179, 191, 223, 227, 229, 233, 239, 263, 269, 277, 283, 293, 311, 317, 347, 349, 359, 367, 373, 383, 389, 431, 439, 461, 467, 479, 499, 503, 509, 523, 557, 563, 569, 587, 593, 607
Offset: 1

Views

Author

Keywords

Comments

This sequence is associated with the conjecture in A245664 that p + q is prime-partitionable.
There are 138438 values of p in the first 216816 primes, i.e., 63.85%, all of which are distinct.

Examples

			The table lists values of n, q, 2k and p for 1 <= n <= 20.
.n      q     2k      p (a(n))
.1      5      2     11
.2     11      2     23
.3      7      4     29
.4     23      2     47
.5     13      4     53
.6     29      2     59
.7     11      6     67
.8     13      6     79
.9     41      2     83
10     11      8     89
11     17      6    103
12     53      2    107
13     13     10    131
14     17      8    137
15     23      6    139
16     37      4    149
17     83      2    167
18     43      4    173
19     89      2    179
20     19     10    191
		

Crossrefs

Programs

  • Maple
    ppgen := proc (n)
      local i, j, k, nprimes, p1a, p1b, p1b_ind, pless, pless_idx, p1b_ind_num_0, p1b_ind_num_1;
      pless := {};
      for i from 3 to n do
        if isprime(i) then
          pless := `union`(pless, {i})
        end if
      end do;
      nprimes := numelems(pless);
      p1b_ind := Vector(nprimes);
      for j to nprimes do
        p1a := pless[j];
        if (1/2)*pless[-1]+1/2 < p1a then
          break
        end if;
        for k to (1/2)*p1a-3/2 do
          p1b := 2*k*p1a+1;
          if member(p1b, pless, 'pless_idx') then
            p1b_ind[pless_idx] := 1
          elif pless[-1] < p1b then
            break
          end if
        end do
      end do;
      p1b_ind_num_0 := 1;
      p1b_ind_num_1 := 0;
      for i to nprimes do
        if p1b_ind[i] = 0 then
          p1b_ind_num_0 := p1b_ind_num_0+1
        else
          p1b_ind_num_1 := p1b_ind_num_1+1;
          fprintf(fop, "%d %d\n", p1b_ind_num_1, pless[i])
        end if
      end do
    end proc;
    n := 376200;
    ppgen(n);
  • PARI
    is(n)=my(f=factor(n\2)[,1]); for(i=1,#f, if(n\2/f[i]*2<=f[i]-3, return(isprime(n)))); 0 \\ Charles R Greathouse IV, Jul 15 2015
Showing 1-10 of 10 results.