cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A014752 Primes of the form x^2 + 27y^2.

Original entry on oeis.org

31, 43, 109, 127, 157, 223, 229, 277, 283, 307, 397, 433, 439, 457, 499, 601, 643, 691, 727, 733, 739, 811, 919, 997, 1021, 1051, 1069, 1093, 1327, 1399, 1423, 1459, 1471, 1579, 1597, 1627, 1657, 1699, 1723, 1753, 1777, 1789, 1801, 1831, 1933, 1999, 2017
Offset: 1

Views

Author

Klaus Brockhaus, Mar 02 2001

Keywords

Comments

Primes p == 1 (mod 3) such that 2 is a cubic residue mod p.
Primes p == 1 (mod 6) such that 2 and -2 are both cubes (one implies the other) mod p. - Warren D. Smith
Subsequence of A040028, complement of A045309 relative to A040028. For p in this sequence, x^3 == 2 (mod p) has three solutions in integers from 0 to p-1, whose sum is p (A059899) or 2*p (A059914). The solutions are given in A060122, A060123 and A060124. - Klaus Brockhaus, Mar 02 2001
Primes p = 3m+1 such that 2^m == 1 (mod p). Subsequence of A016108 which also includes composites satisfying this congruence. - Alzhekeyev Ascar M, Feb 22 2012

References

  • K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 1982, Prop. 9.6.2, p. 119.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500) | NormEquation(27, p) eq true]; // Vincenzo Librandi, Jul 24 2016
  • Mathematica
    With[{nn=50},Take[Select[Union[First[#]^2+27Last[#]^2&/@Tuples[Range[ nn], 2]],PrimeQ],nn]] (* Harvey P. Dale, Jul 28 2014 *)
    nn = 1398781;re = Sort[Reap[Do[Do[If[PrimeQ[p = x^2 + 27*y^2], Sow[{p, x, y}]], {x, Sqrt[nn - 27*y^2]}], {y, Sqrt[nn/27]}]][[2, 1]]]; (* For all 17753 values of a(n), x(n) and y(n). - Zak Seidov, May 20 2016 *)
  • PARI
    { fc(a,b,c,M) = my(p,t1,t2,n); t1 = listcreate();
    for(n=1,M, p = prime(n);
    t2 = qfbsolve(Qfb(a,b,c),p); if(t2 == 0,, listput(t1,p)));
    print(t1);
    }
    fc(1,0,27,1000);
    \\ N. J. A. Sloane, Jun 06 2014
    
  • PARI
    list(lim)=my(v=List()); forprimestep(p=31,lim,6, if(Mod(2,p)^(p\3)==1, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Apr 06 2022
    

Formula

a(n) ~ 6n log n by the Landau prime ideal theorem. - Charles R Greathouse IV, Apr 06 2022

Extensions

Definition provided by T. D. Noe, May 08 2005
Entry revised by Michael Somos and N. J. A. Sloane, Jul 28 2006
Defective Mma program replaced with PARI program, b-file recomputed and extended by N. J. A. Sloane, Jun 06 2014

A001133 Primes p such that the multiplicative order of 2 modulo p is (p-1)/3.

Original entry on oeis.org

43, 109, 157, 229, 277, 283, 307, 499, 643, 691, 733, 739, 811, 997, 1021, 1051, 1069, 1093, 1459, 1579, 1597, 1627, 1699, 1723, 1789, 1933, 2179, 2203, 2251, 2341, 2347, 2749, 2917, 3163, 3181, 3229, 3259, 3373, 4027, 4339, 4549, 4597, 4651, 4909, 5101, 5197, 5323, 5413, 5437, 5653, 6037
Offset: 1

Views

Author

Keywords

References

  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 59.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(4597) | r eq 1 and Order(R!2) eq q where q,r is Quotrem(p,3) where R is ResidueClassRing(p) ]; // Klaus Brockhaus, Dec 02 2008
    
  • Mathematica
    Reap[For[p = 2, p < 10^4, p = NextPrime[p], If[MultiplicativeOrder[2, p] == (p-1)/3, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 10 2015 *)
  • PARI
    forprime(p=3,10^4,if(znorder(Mod(2,p))==(p-1)/3,print1(p,", "))); \\ Joerg Arndt, May 17 2013

Extensions

More terms and better definition from Don Reble, Mar 11 2006

A059899 Primes p such that x^3 = 2 has more than one solution mod p and the sum of the (three) solutions is p.

Original entry on oeis.org

31, 229, 397, 439, 457, 499, 601, 643, 691, 727, 739, 811, 919, 997, 1021, 1051, 1093, 1327, 1459, 1657, 1699, 1753, 1933, 1999, 2113, 2179, 2203, 2251, 2281, 2341, 2347, 2383, 2671, 2731, 2767, 2791, 2833, 2953, 2971, 3061, 3229, 3259, 3331, 3373, 3391
Offset: 1

Views

Author

Klaus Brockhaus, Mar 02 2001

Keywords

Comments

Subsequence of A040028 and of A014752, complement of A059914 relative to A014752. Solutions mod p are represented by integers from 0 to p-1.

Crossrefs

Programs

  • Maple
    filter:= proc(p) local S;
      if not isprime(p) then return false fi;
      S:= map(t -> rhs(t[1]), [msolve(x^3=2,p)]);
      nops(S) = 3 and convert(S,`+`) = p
    end proc:
    select(filter, [seq(i,i=7..5000, 6)]); # Robert Israel, Aug 13 2024
Showing 1-3 of 3 results.