cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A016140 Expansion of 1/((1-3*x)*(1-8*x)).

Original entry on oeis.org

1, 11, 97, 803, 6505, 52283, 418993, 3354131, 26839609, 214736555, 1717951489, 13743789059, 109950843913, 879608345627, 7036871547985, 56294986732787, 450359936909017, 3602879624412299, 28823037382718881, 230584300224012515, 1844674405278884521, 14757395252691429371, 118059162052912494577, 944473296517443135443
Offset: 0

Views

Author

Keywords

Comments

In general, for expansion of 1/((1-b*x)*(1-c*x)): a(n) = (c^(n+1) - b^(n+1))/(c-b) = (b+c)*a(n-1) - b*c*a(n-2) = b*a(n-1) + c^n = c*a(n-1) + b^n = Sum_{i=0..n} b^i*c^(n-i). - Henry Bottomley, Jul 20 2000
8*a(n) gives the number of edges in the n-th-order SierpiƄski carpet graph. - Eric W. Weisstein, Aug 19 2013

Crossrefs

Sequences with g.f. 1/((1-n*x)*(1-8*x)): A001018 (n=0), A023001 (n=1), A016131 (n=2), this sequence (n=3), A016152 (n=4), A016162 (n=5), A016170 (n=6), A016177 (n=7), A053539 (n=8), A016185 (n=9), A016186 (n=10), A016187 (n=11), A016188 (n=12), A060195 (n=16).
Cf. A190543.

Programs

Formula

a(n) = (8^(n+1) - 3^(n+1))/5.
a(n) = 11*a(n-1) - 24*a(n-2).
a(n) = 3*a(n-1) + 8^n.
a(n) = 8*a(n-1) + 3^n.
a(n) = Sum_{i=0..n} 3^i*8^(n-i).
E.g.f.: (1/5)*(8*exp(8*x) - 3*exp(3*x)). - G. C. Greubel, Nov 14 2024

A075503 Stirling2 triangle with scaled diagonals (powers of 8).

Original entry on oeis.org

1, 8, 1, 64, 24, 1, 512, 448, 48, 1, 4096, 7680, 1600, 80, 1, 32768, 126976, 46080, 4160, 120, 1, 262144, 2064384, 1232896, 179200, 8960, 168, 1, 2097152, 33292288, 31653888, 6967296, 537600, 17024, 224, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(8*z) - 1)*x/8) - 1.

Examples

			[1]; [8,1]; [64,24,1]; ...; p(3,x) = x(64 + 24*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*       1
*       8        1
*      64       24        1
*     512      448       48       1
*    4096     7680     1600      80      1
*   32768   126976    46080    4160    120     1
*  262144  2064384  1232896  179200   8960   168   1
* 2097152 33292288 31653888 6967296 537600 17024 224 1
(End)
		

Crossrefs

Columns 1-7 are A001018, A060195, A076003-A076007. Row sums are A075507.

Programs

  • Mathematica
    Flatten[Table[8^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(8^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (8^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*8)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 8m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-8k*x), m >= 1.
E.g.f. for m-th column: (((exp(8x)-1)/8)^m)/m!, m >= 1.

A065128 Number of invertible n X n matrices mod 4 (i.e., over the ring Z_4).

Original entry on oeis.org

1, 2, 96, 86016, 1321205760, 335522845163520, 1385295986380096143360, 92239345887620476544860815360, 98654363640526679389774053813465907200, 1691558770638735027870457216848672340872423014400, 464518059995994038184379206447729320401459864818351813427200
Offset: 0

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 14 2001

Keywords

Crossrefs

Column k=4 of A316622.

Programs

  • Mathematica
    a[n_] := 4^(n^2)*Product[1 - 1/2^k, {k, 1, n} ]; Table[ a[n], {n, 0, 10} ]
  • PARI
    for(n=1,11,print(4^(n^2)*prod(k=1,n,(1-1/2^k))))

Formula

a(n) = 4^(n^2) * Product_{k=1..n} (1 - 1/2^k).
a(n) = 2^(n^2) * A002884(n). - Geoffrey Critzer, Feb 04 2018
From Amiram Eldar, Jul 06 2025: (Start)
a(n) = Product_{k=1..n} 2*A060195(k).
a(n) ~ c * 4^(n^2), where c = A048651. (End)

Extensions

More terms from Robert G. Wilson v and Jason Earls, Nov 16 2001

A076003 Third column of triangle A075503.

Original entry on oeis.org

1, 48, 1600, 46080, 1232896, 31653888, 792985600, 19566428160, 478167433216, 11613323132928, 280917704704000, 6777200695050240, 163215697915150336, 3926183399462535168, 94372512377130188800
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..2} A075513(3,m)*exp(8*(m+1)*x)/2!.

Crossrefs

Formula

a(n) = A075503(n+3, 3) = (8^n)*S2(n+3, 3) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = (8^n - 8*16^n + 9*24^n)/2.
G.f.: 1/Product_{k=1..3} (1 - 8*k*x).
E.g.f.: (d^3/dx^3)(((exp(8*x)-1)/8)^3)/3! = (exp(8*x) - 8*exp(16*x) + 9*exp(24*x))/2!.
Showing 1-4 of 4 results.