A016140
Expansion of 1/((1-3*x)*(1-8*x)).
Original entry on oeis.org
1, 11, 97, 803, 6505, 52283, 418993, 3354131, 26839609, 214736555, 1717951489, 13743789059, 109950843913, 879608345627, 7036871547985, 56294986732787, 450359936909017, 3602879624412299, 28823037382718881, 230584300224012515, 1844674405278884521, 14757395252691429371, 118059162052912494577, 944473296517443135443
Offset: 0
Sequences with g.f. 1/((1-n*x)*(1-8*x)):
A001018 (n=0),
A023001 (n=1),
A016131 (n=2), this sequence (n=3),
A016152 (n=4),
A016162 (n=5),
A016170 (n=6),
A016177 (n=7),
A053539 (n=8),
A016185 (n=9),
A016186 (n=10),
A016187 (n=11),
A016188 (n=12),
A060195 (n=16).
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-3*x)*(1-8*x)))); // Vincenzo Librandi, Jun 24 2013
-
Table[(8^(n+1)-3^(n+1))/5, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011 *)
CoefficientList[Series[1/((1-3 x)(1-8 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 24 2013 *)
LinearRecurrence[{11,-24},{1,11},30] (* Harvey P. Dale, Feb 03 2022 *)
-
Vec(1/((1-3*x)*(1-8*x))+O(x^30)) \\ Charles R Greathouse IV, Sep 23 2012
-
[lucas_number1(n,11,24) for n in range(1, 30)] # Zerinvary Lajos, Apr 27 2009
A075503
Stirling2 triangle with scaled diagonals (powers of 8).
Original entry on oeis.org
1, 8, 1, 64, 24, 1, 512, 448, 48, 1, 4096, 7680, 1600, 80, 1, 32768, 126976, 46080, 4160, 120, 1, 262144, 2064384, 1232896, 179200, 8960, 168, 1, 2097152, 33292288, 31653888, 6967296, 537600, 17024, 224, 1
Offset: 1
[1]; [8,1]; [64,24,1]; ...; p(3,x) = x(64 + 24*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 8 1
* 64 24 1
* 512 448 48 1
* 4096 7680 1600 80 1
* 32768 126976 46080 4160 120 1
* 262144 2064384 1232896 179200 8960 168 1
* 2097152 33292288 31653888 6967296 537600 17024 224 1
(End)
-
Flatten[Table[8^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
-
for(n=1, 11, for(m=1, n, print1(8^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
A065128
Number of invertible n X n matrices mod 4 (i.e., over the ring Z_4).
Original entry on oeis.org
1, 2, 96, 86016, 1321205760, 335522845163520, 1385295986380096143360, 92239345887620476544860815360, 98654363640526679389774053813465907200, 1691558770638735027870457216848672340872423014400, 464518059995994038184379206447729320401459864818351813427200
Offset: 0
Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 14 2001
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Jeffrey Overbey, William Traves, and Jerzy Wojdylo, On the Keyspace of the Hill Cipher, Cryptologia, Vol. 29, Iss. 1 (2005), pp. 59-72; author's copy.
-
a[n_] := 4^(n^2)*Product[1 - 1/2^k, {k, 1, n} ]; Table[ a[n], {n, 0, 10} ]
-
for(n=1,11,print(4^(n^2)*prod(k=1,n,(1-1/2^k))))
Original entry on oeis.org
1, 48, 1600, 46080, 1232896, 31653888, 792985600, 19566428160, 478167433216, 11613323132928, 280917704704000, 6777200695050240, 163215697915150336, 3926183399462535168, 94372512377130188800
Offset: 0
Showing 1-4 of 4 results.
Comments