A060294 Decimal expansion of Buffon's constant 2/Pi.
6, 3, 6, 6, 1, 9, 7, 7, 2, 3, 6, 7, 5, 8, 1, 3, 4, 3, 0, 7, 5, 5, 3, 5, 0, 5, 3, 4, 9, 0, 0, 5, 7, 4, 4, 8, 1, 3, 7, 8, 3, 8, 5, 8, 2, 9, 6, 1, 8, 2, 5, 7, 9, 4, 9, 9, 0, 6, 6, 9, 3, 7, 6, 2, 3, 5, 5, 8, 7, 1, 9, 0, 5, 3, 6, 9, 0, 6, 1, 4, 0, 3, 6, 0, 4, 5, 5, 2, 1, 1, 0, 6, 5, 0, 1, 2, 3, 4, 3, 8, 2, 4, 2, 9, 1
Offset: 0
Examples
2/Pi = 0.6366197723675813430755350534900574481378385829618257949906...
References
- David Blatner, The Joy of Pi. New York: Walker & Company (1997): 119, circle by upper right corner.
- G. Buffon, Essai d'arithmétique morale. Supplément à l'Histoire Naturelle, Vol. 4, 1777.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 141, 539.
- Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 196.
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publ., Providence, RI, 2002, p. 7, eq. (1.2) and p. 105 eq. (7.4.2) with s=1/2.
- Robert Kanigel, The Man Who Knew Infinity: A Life of the Genius Ramanujan, 1991.
- Daniel A. Klain and Gian-Carlo Rota, Introduction to Geometric Probability, Cambridge, 1997, see Chap. 1.
- Luis A. Santaló, Integral Geometry and Geometric Probability, Addison-Wesley, 1976.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 53.
- Robert M. Young, Excursions in Calculus, An Interplay of the Continuous and the Discrete. Dolciani Mathematical Expositions Number 13. MAA.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- Iaroslav V. Blagouchine and Eric Moreau, On a finite sum of cosecants appearing in various problems, Journal of Mathematical Analysis and Applications, vol. 539, no. 1, pt. 2, pp. 1-36, 2024. See p. 18.
- K. S. Brown, MathPages: The Algebra of an Infinite Grid of Resistors
- G. Buffon, Essai d'arithmétique morale, Supplément à l'Histoire Naturelle, Vol. 4, 1777.
- Encyclopedia of Mathematics, Arcsine distribution
- Boris Gourevitch, L'univers de Pi
- Mark Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49:4 (1943), pp. 314-320.
- MacTutor History of Mathematics archive, Georges-Louis Leclerc, Comte de Buffon.
- Veikko Nevanlinna, On constants connected with the prime number theorem for arithmetic progressions, Annales Academiae Scientiarum Fennicae Ser. A. I., No. 539 (1973).
- Da-Wei Niu, Jian Cao, and Feng Qi, Generalizations of Jordan's inequality and concerned relations, U.P.B. Sci. Bull., Series A, Vol. 72, Iss. 3, 2010
- Herbert Solomon, Geometric Probability, SIAM, 1978, p. 152. [See average chord length comment]
- Eric Weisstein's World of Mathematics, Buffon's needle problem.
- Eric Weisstein's World of Mathematics, Magic Geometric Constants.
- Eric Weisstein's World of Mathematics, Prime Products.
- Eric Weisstein's World of Mathematics, Geometric Centroid.
- Eric Weisstein's World of Mathematics, Jordan's Inequality.
- Wikipedia, Buffon's needle problem.
- Wikipedia, Centroid.
- Wikipedia, Jordan's inequality.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Magma
R:= RealField(100); 2/Pi(R); // G. C. Greubel, Mar 09 2018
-
Maple
Digits:=100: evalf(2/Pi); # Wesley Ivan Hurt, Aug 02 2014
-
Mathematica
RealDigits[ N[ 2/Pi, 111]][[1]]
-
PARI
default(realprecision, 20080); x=20/Pi; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b060294.txt", n, " ", d)); \\ Harry J. Smith, Jul 03 2009
Formula
2/Pi = 1 - 5*(1/2)^3 + 9*((1*3)/(2*4))^3 - 13*((1*3*5)/(2*4*6))^3 ... - Jason Earls [formula corrected by Paul D. Hanna, Mar 23 2013]
The preceding formula is 2/Pi = Sum_{n>=0} (-1)^n * (4*n+1) * Product_{k=1..n} (2*k-1)^3/(2*k)^3. - Alexander R. Povolotsky, Mar 24 2013. [See the Hardy reference. - Wolfdieter Lang, Nov 13 2016]
2/Pi = Product_{n>=2} (p(n) + 2 - (p(n) mod 4))/p(n), where p(n) is the n-th prime. - Alonso del Arte, May 16 2012
2/Pi = Sum_{k>=0} ((2*k)!/(k!)^2)^3*((42*k+5)/(2^{12*k+3})) (due to Ramanujan). - L. Edson Jeffery, Mar 23 2013
Equals sinc(Pi/2). - Peter Luschny, Oct 04 2019
From A.H.M. Smeets, Apr 11 2020: (Start)
Equals Product_{i > 0} cos(Pi/2^(i+1)).
Equals Product_{i > 0} f_i(2)/2, where f_0(2) = 0, f_(i+1)(2) = sqrt(2+f_i(2)) for i >= 0; a formula by François Viète (16th century).
Note that cos(Pi/2^(i+1)) = f_i(2)/2, i >= 0. (End)
Equals lim_{n->infinity} (1/n) * Sum_{k=1..n} abs(sin(k * m)) for all nonzero integers m (conjectured). Works with cos also. - Dimitri Papadopoulos, Jul 17 2020
From Amiram Eldar, Sep 08 2020: (Start)
Equals Product_{k>=1} (1 - 1/(2*k)^2).
Equals lim_{k->oo} (2*k+1)*binomial(2*k,k)^2/2^(4*k).
Equals Sum_{k>=0} binomial(2*k,k)^2/((2*k+2)*2^(4*k)). (End)
Equals Sum_{k>=0} mu(4*k+1)/(4*k+1) (Nevanlinna, 1973). - Amiram Eldar, Dec 21 2020
Equals 1 - Sum_{n >= 1} (1/16^n) * binomial(2*n, n)^2 * 1/(2*n - 1). See Young, p. 264. - Peter Bala, Feb 17 2024
Equals binomial(0, 1/2) = binomial(0, -1/2). - Peter Luschny, Dec 05 2024
From Peter Bala, Dec 10 2024:(Start)
2/Pi = 1 - 1/(2 + 2/(1 + 6/(1 + 12/(1 + 20/(1 + ... + n*(n+1)/(1 + ...), a continued fraction representation due to Euler. See A346943.
Equals 1 - (1/2)*Sum_{n >= 0} A005566(n)*(-1/4)^n. (End)
Comments