cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A060576 a(n) = 1 except for a(1) = 0.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Vladeta Jovovic, Apr 03 2001

Keywords

Comments

Old name: Number of homeomorphically irreducible general graphs on 1 labeled node and with n edges.
A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.
This sequence is also produced by Wolfram's Rule 253 of Elementary Cellular Automaton as a triangle read by rows giving successive states initiated with a single ON (black) cell. See the Wolfram, Weisstein and Index links below. - Robert Price, Jan 31 2016
Decimal expansion of 91/900. - Elmo R. Oliveira, May 05 2024

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Programs

Formula

G.f.: (x^2 - x + 1)/(1 - x). a(0)=1, a(1)=0; a(n)=1, n > 1.
E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^(- 1/2)*exp(- x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp(- x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.
E.g.f.: e^x - x. - Paul Barry, May 06 2007
a(n) = 1 - binomial(0,n-1). - Arkadiusz Wesolowski, Feb 10 2012

Extensions

Definition simplified by N. J. A. Sloane, Sep 26 2023

A060533 Number of homeomorphically irreducible multigraphs (or series-reduced multigraphs or multigraphs without nodes of degree 2) on 3 labeled nodes.

Original entry on oeis.org

1, 3, 0, 3, 9, 12, 19, 27, 36, 46, 57, 69, 82, 96, 111, 127, 144, 162, 181, 201, 222, 244, 267, 291, 316, 342, 369, 397, 426, 456, 487, 519, 552, 586, 621, 657, 694, 732, 771, 811, 852, 894, 937, 981, 1026, 1072, 1119, 1167, 1216, 1266, 1317, 1369, 1422
Offset: 0

Views

Author

Vladeta Jovovic, Apr 01 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Programs

  • Mathematica
    i=5;s=1;lst={s};Do[s+=n+i;If[s>=0, AppendTo[lst, s]], {n, 0, 6!, 1}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 30 2008 *)
  • PARI
    Vec((3*x^7-7*x^6+6*x^5+3*x^4-11*x^3+6*x^2-1)/(x-1)^3 + O(x^60)) \\ Colin Barker, Nov 10 2016

Formula

G.f.: (3*x^7 - 7*x^6 + 6*x^5 + 3*x^4 - 11*x^3 + 6*x^2 - 1)/(x - 1)^3.
E.g.f. for homeomorphically irreducible multigraphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp(x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.
From Colin Barker, Nov 10 2016: (Start)
a(n) = (1 + n)*(2 + n)/2 - 9 for n>4.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>7. (End)
Sum_{n>=3} 1/a(n) = 1/72 + 2*tan(sqrt(73)*Pi/2)*Pi/sqrt(73). - Amiram Eldar, Jan 08 2023

A060537 Number of homeomorphically irreducible multigraphs (or series-reduced multigraphs or multigraphs without nodes of degree 2) on 7 labeled nodes.

Original entry on oeis.org

1, 21, 105, 266, 1386, 6678, 25403, 100506, 384678, 1393903, 4831890, 15955485, 50080478, 149211930, 421819950, 1132236630, 2890927935, 7040892159, 16411041500, 36733789575, 79230165105, 165194651065, 333926559540
Offset: 0

Views

Author

Vladeta Jovovic, Apr 01 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Formula

G.f.: (7*x^33 - 42*x^32 + 105*x^31 + 3598*x^30 - 64995*x^29 + 498369*x^28 - 2213029*x^27 + 6169800*x^26 - 10213560*x^25 + 4476990*x^24 + 27664014*x^23 - 97812519*x^22 + 197723150*x^21 - 296237340*x^20 + 352014180*x^19 - 334492361*x^18 + 243984426*x^17 - 117769575*x^16 + 9628325*x^15 + 45726945*x^14 - 50729175*x^13 + 31353175*x^12 - 11717370*x^11 + 1358280*x^10 + 1395765*x^9 - 1068648*x^8 + 395328*x^7 - 77805*x^6 + 882*x^5 + 4095*x^4 - 1141*x^3 + 126*x^2 - 1)/(x - 1)^21. E.g.f. for homeomorphically irreducible multigraphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp(x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.

A060581 Number of homeomorphically irreducible general graphs on 6 labeled node and with n edges.

Original entry on oeis.org

1, 15, 81, 441, 2151, 9957, 43122, 174162, 666267, 2403987, 8183601, 26281065, 79660856, 228180456, 618992466, 1595081266, 3918506466, 9211519476, 20797923546, 45258309066, 95225448306, 194283668576, 385361919996
Offset: 0

Views

Author

Vladeta Jovovic, Apr 03 2001

Keywords

Comments

A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Formula

G.f.: (6*x^30 - 30*x^29 - 90*x^28 + 898*x^27 - 5703*x^26 + 67854*x^25 - 552925*x^24 + 2795730*x^23 - 9663357*x^22 + 24476292*x^21 - 47540991*x^20 + 73129860*x^19 - 91373250*x^18 + 94675608*x^17 - 82549758*x^16 + 60794764*x^15 - 37293240*x^14 + 18277860*x^13 - 6426742*x^12 + 945252*x^11 + 680499*x^10 - 726250*x^9 + 423825*x^8 - 187536*x^7 + 66981*x^6 - 19092*x^5 + 4065*x^4 - 560*x^3 + 24*x^2 + 6*x - 1)/(x - 1)^21. E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp( - x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.

A060534 Number of homeomorphically irreducible multigraphs (or series-reduced multigraphs or multigraphs without nodes of degree 2) on 4 labeled nodes.

Original entry on oeis.org

1, 6, 3, 10, 48, 84, 182, 372, 699, 1222, 2007, 3132, 4688, 6780, 9528, 13068, 17553, 23154, 30061, 38484, 48654, 60824, 75270, 92292, 112215, 135390, 162195, 193036, 228348, 268596, 314276, 365916, 424077, 489354, 562377, 643812, 734362, 834768, 945810
Offset: 0

Views

Author

Vladeta Jovovic, Apr 01 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Programs

  • PARI
    Vec(-(4*x^12-12*x^11+6*x^10+50*x^9-180*x^8+282*x^7-208*x^6+30*x^5+72*x^4-62*x^3+18*x^2-1)/((x-1)^6) + O(x^40)) \\ Colin Barker, Nov 10 2016

Formula

G.f.: - (4*x^12 - 12*x^11 + 6*x^10 + 50*x^9 - 180*x^8 + 282*x^7 - 208*x^6 + 30*x^5 + 72*x^4 - 62*x^3 + 18*x^2 - 1)/((x - 1)^6).
E.g.f. for homeomorphically irreducible multigraphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp(x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.
From Colin Barker, Nov 10 2016: (Start)
a(n) = 60 + 48*(1+n) - 12*(1+n)*(2+n) + (1+n)*(2+n)*(3+n)*(4+n)*(5+n)/120 for n>6.
a(n) = 6*a(n-1)- 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>12.
(End)

A060577 Number of homeomorphically irreducible general graphs on 2 labeled nodes and with n edges.

Original entry on oeis.org

1, 1, 4, 6, 11, 17, 24, 32, 41, 51, 62, 74, 87, 101, 116, 132, 149, 167, 186, 206, 227, 249, 272, 296, 321, 347, 374, 402, 431, 461, 492, 524, 557, 591, 626, 662, 699, 737, 776, 816, 857, 899, 942, 986, 1031, 1077, 1124, 1172, 1221, 1271, 1322, 1374, 1427
Offset: 0

Views

Author

Vladeta Jovovic, Apr 04 2001

Keywords

Comments

A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Programs

  • Maple
    gf := (2*x^5 - 4*x^4 + 4*x^3 - 4*x^2 + 2*x - 1)/(x - 1)^3: s := series(gf, x, 100): for i from 0 to 100 do printf(`%d,`,coeff(s,x,i)) od:
  • Mathematica
    Join[{1, 1, 4}, Table[n (n + 3)/2 - 3, {n, 3, 60}]] (* Bruno Berselli, Aug 20 2015 *)

Formula

G.f.: (2*x^5 - 4*x^4 + 4*x^3 - 4*x^2 + 2*x - 1)/(x - 1)^3.
E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp( - x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.
From Marco RipĂ , Aug 20 2015: (Start)
a(n) = ceiling( (1/2)*(3*n^2 - 10*n + 9)/(n - 2) ) + floor( (3/2)*(n-1)^2 ) - n^2 + 3*n - 3 with n > 2, a(0) = a(1) = 1, a(2) = 4.
a(n) = n*(n + 3)/2 - 3 for n > 2.
a(n) = A046691(n-1) for n > 2. (End)

Extensions

More terms from James Sellers, Apr 04 2001

A060517 Triangle T(n,k) of series-reduced (or homeomorphically irreducible) graphs with loops on n labeled nodes and with k edges, k=0..binomial(n+1,2).

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 1, 3, 6, 6, 6, 3, 1, 1, 6, 15, 34, 58, 60, 60, 50, 33, 10, 1, 1, 10, 35, 120, 265, 475, 820, 1200, 1615, 1860, 1693, 1060, 425, 105, 15, 1, 1, 15, 75, 330, 990, 2691, 6326, 13170, 26205, 48055, 79206, 112863, 133535, 124680, 88890, 47874
Offset: 0

Views

Author

Vladeta Jovovic, Mar 24 2001

Keywords

Examples

			[1], [1, 0], [1, 1, 2, 1], [1, 3, 6, 6, 6, 3, 1], [1, 6, 15, 34, 58, 60, 60, 50, 33, 10, 1], [1, 10, 35, 120, 265, 475, 820, 1200, 1615, 1860, 1693, 1060, 425, 105, 15, 1], [1, 15, 75, 330, 990, 2691, 6326, 13170, 26205, 48055, 79206, 112863, 133535, 124680, 88890, 47874, 19443, 5925, 1330, 210, 21, 1], ...
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Row sums: A060516, A003514, A060514.

Formula

E.g.f.: (1 + x * y)^( - 1/2) * exp( - x * y/2 - x^2 * y^2/4) * Sum_{k=0..inf}(1 + x)^binomial(k + 1, 2) * exp( - x^2 * y * k^2/(2 * (1 + x * y)) + x^2 * y * k/2) * x^k/k!

A060535 Number of homeomorphically irreducible multigraphs (or series-reduced multigraphs or multigraphs without nodes of degree 2) on 5 labeled nodes.

Original entry on oeis.org

1, 10, 15, 30, 165, 430, 1170, 3180, 7935, 18610, 40948, 84570, 164740, 304690, 538630, 915574, 1504135, 2398460, 3725495, 5653790, 8404075, 12261860, 17592335, 24857870, 34638440, 47655326, 64798470, 87157890, 116059590
Offset: 0

Views

Author

Vladeta Jovovic, Apr 01 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Formula

G.f.: (5*x^18 - 20*x^17 + 30*x^16 + 58*x^15 - 745*x^14 + 2790*x^13 - 5270*x^12 + 5010*x^11 - 711*x^10 - 4380*x^9 + 6270*x^8 - 4470*x^7 + 1535*x^6 + 178*x^5 - 450*x^4 + 210*x^3 - 40*x^2 + 1)/(x - 1)^10. E.g.f. for homeomorphically irreducible multigraphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp(x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.

A060536 Number of homeomorphically irreducible multigraphs (or series-reduced multigraphs or multigraphs without nodes of degree 2) on 6 labeled nodes.

Original entry on oeis.org

1, 15, 45, 90, 495, 1866, 5990, 19920, 62655, 186525, 526470, 1403265, 3530000, 8388495, 18884475, 40442635, 82775970, 162663240, 308201500, 565176105, 1006419120, 1745321275, 2955037455, 4895398755, 7950135835, 12677752431
Offset: 0

Views

Author

Vladeta Jovovic, Apr 01 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Formula

G.f.: - (6*x^25 - 30*x^24 + 60*x^23 + 615*x^22 - 9280*x^21 + 54909*x^20 - 186150*x^19 + 404285*x^18 - 581340*x^17 + 522915*x^16 - 172878*x^15 - 289605*x^14 + 590880*x^13 - 581955*x^12 + 337755*x^11 - 67650*x^10 - 74150*x^9 + 84315*x^8 - 42870*x^7 + 10410*x^6 + 888*x^5 - 1590*x^4 + 535*x^3 - 75*x^2 + 1)/(x - 1)^15. E.g.f. for homeomorphically irreducible multigraphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp(x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.

A060578 Number of homeomorphically irreducible general graphs on 3 labeled node and with n edges.

Original entry on oeis.org

1, 3, 9, 21, 60, 135, 282, 537, 945, 1561, 2451, 3693, 5378, 7611, 10512, 14217, 18879, 24669, 31777, 40413, 50808, 63215, 77910, 95193, 115389, 138849, 165951, 197101, 232734, 273315, 319340, 371337, 429867, 495525, 568941, 650781, 741748
Offset: 0

Views

Author

Vladeta Jovovic, Apr 03 2001

Keywords

Comments

A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(8x^9-36x^8+66x^7-70x^6+51x^5-24x^4+8x^3-6x^2+3x-1)/(x-1)^6,{x,0,40}],x] (* Harvey P. Dale, Jul 22 2018 *)

Formula

G.f.: - (8*x^9 - 36*x^8 + 66*x^7 - 70*x^6 + 51*x^5 - 24*x^4 + 8*x^3 - 6*x^2 + 3*x - 1)/(x - 1)^6. E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp( - x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.
Showing 1-10 of 12 results. Next