cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060566 a(n) = n^2 - 79*n + 1601.

Original entry on oeis.org

1601, 1523, 1447, 1373, 1301, 1231, 1163, 1097, 1033, 971, 911, 853, 797, 743, 691, 641, 593, 547, 503, 461, 421, 383, 347, 313, 281, 251, 223, 197, 173, 151, 131, 113, 97, 83, 71, 61, 53, 47, 43, 41, 41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601, 1681
Offset: 0

Views

Author

Jason Earls, Apr 11 2001

Keywords

Comments

a(n) is prime for 0 <= n <= 79. a(80) = 1681 = 41^2.
More than the usual number of terms are shown in order to display the initial 80 primes.
First 80 prime entries are palindromically distributed because a(n) = P(x) = x^2 + x + 41, with x = n - 40 and we observe that P(x) generates primes (A005846) for x = 0 through 39, along with the fact that P(-x) = P(x-1). - Lekraj Beedassy, Apr 24 2006

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 6.
  • C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Dover Publications, NY, 1966, p. 37, 147.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 115.

Crossrefs

Programs

Formula

From Vincenzo Librandi, Feb 27 2017: (Start)
G.f.: (1601 - 3280*x + 1681*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = (n-40)^2 + (n-40) + 41. - Miquel Cerda, Jul 10 2017
E.g.f.: exp(x)*(1601 - 78*x + x^2). - Elmo R. Oliveira, Feb 09 2025

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 16 2007
a(125) in b-file corrected by Andrew Howroyd, Feb 21 2018