A073104 Duplicate of A060566.
1523, 1447, 1373, 1301, 1231, 1163, 1097, 1033, 971, 911, 853, 797, 743, 691, 641
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
List([0..50], n -> n^2 +n+41); # G. C. Greubel, Dec 04 2018
a202018 = (+ 41) . a002378
[n^2 + n + 41 : n in [0..50]]; // Wesley Ivan Hurt, Sep 28 2014
A202018:=n->n^2+n+41: seq(A202018(n), n=0..50); # Wesley Ivan Hurt, Sep 28 2014
Table[n^2 + n + 41, {n, 0, 49}] (* Alonso del Arte, Dec 08 2011 *)
a(n)=n^2+n+41 \\ Charles R Greathouse IV, Dec 08 2011
[n^2+n+41 for n in range(50)] # G. C. Greubel, Dec 04 2018
(0 to 49).map((n: Int) => n * n + n + 41) // Alonso del Arte, Nov 29 2018
[n: n in [0..100] |IsPrime(n^2-n+41)]; // Vincenzo Librandi, Nov 21 2010
A002837:=n->`if`(isprime(n^2-n+41),n,NULL): seq(A002837(n), n=0..100); # Wesley Ivan Hurt, Oct 21 2014
Select[Range[0,100],PrimeQ[#^2-#+41]&] (* Harvey P. Dale, May 27 2012 *)
v=[ ]; for(n=0,100, if(isprime(n^2-n+41),v=concat(v,n),)); v
[2*n^2-108*n+1259: n in [0..49]]; // Bruno Berselli, May 18 2012
Table[2 n^2 + 40 n + 1, {n, -37, 962}] (* Mikk Heidemaa, Feb 18 2016 *)
a(n)=2*n^2 - 108*n + 1259 \\ Charles R Greathouse IV, Jun 29 2017
[n^2+3*n-167: n in [0..47]]; // Bruno Berselli, May 18 2012
Table[n^2+3n-167,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{-167,-163,-157},50] (* Harvey P. Dale, Feb 08 2020 *)
Vec((-167+338*x-169*x^2)/(1-x)^3+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012
apply( {A212325(n)=(n+3)*n-167}, [0..55]) \\ M. F. Hasler, Feb 11 2025
def A212325(n=None, upto=None): return(A212325(i)for i in range(n or 0, upto or 2**63)) if upto or n is None else(n+3)*n-167 # M. F. Hasler, Feb 11 2025
a(n) = { while( !isprime( n^2-n+41 ), n-=40 ); n^2-n+41 }
[((-1)^n+a)*a+41 where a is 2*n-38 : n in [0..50]];
g[n_] := 2*n - 38; f[n_] := ((-1)^n + g[n])*g[n] + 41; Table[f[n], {n, 0, 50}] EulerP[n_] := n^2 - n + 41; f[n_] := 2*n - (3 + (-1)^n)/2; LinearRecurrence[{1, 2, -2, -1, 1}, Table[EulerP@f[n], {n, 19, 15, -1}], {0, 50}]
Vec((1447 - 74*x - 3104*x^2 + 82*x^3 + 1681*x^4) / ((1 - x)^3*(1 + x)^2) + O(x^100)) \\ Colin Barker, Aug 14 2017
The m-th row start and end: T(m,1) = m^2, ..., T(m,2m) = m^2. In general T(m,k) = T(m,2m+1-k). m\k 1 2 3 4 5 6 7 8 9 10 1 1, 1, 2 4, 2, 2, 4 3 9, 5, 3, 3, 5, 9 4 16, 10, 6, 4, 4, 6, 10, 16 5 25, 17, 11, 7, 5, 5, 7, 11, 17, 25 6 36, 26, 18, 12, 8, 6, 6, 8, 12, 18, ... 7 49, 37, 27, 19, 13, 9, 7, 7, 9, 13, ... 8 64, 50, 38, 28, 20, 14, 10, 8, 8, 10, ... 9 81, 65, 51, 39, 29, 21, 15, 11, 9, 9, ... 10 100, 82, 66, 52, 40, 30 22, 16, 12, 10, ... The T(m,k) sequence as an isosceles triangle: 1 1 4 2 2 4 9 5 3 3 5 9 16 10 6 4 4 6 10 16 25 17 11 7 5 5 7 11 17 25 36 26 18 12 8 6 6 8 12 18 26 36 49 37 27 19 13 9 7 7 9 13 19 27 37 49 64 50 38 28 20 14 10 8 8 1 14 20 28 38 50 64 81 65 51 39 29 21 15 11 9 9 11 15 21 29 39 51 65 81 100 82 66 52 40 30 22 16 12 10 10 12 16 22 30 40 52 66 82 100
Table[(m + 1 - k)^2 + k - 1, {m, 0, 10}, {k, 2 m}] /. {} -> {0} // Flatten (* Michael De Vlieger, Jul 12 2017 *)
T(m,k) = (m+1-k)^2+k-1 \\ Charles R Greathouse IV, Jul 12 2017
Comments