A060690 a(n) = binomial(2^n + n - 1, n).
1, 2, 10, 120, 3876, 376992, 119877472, 131254487936, 509850594887712, 7145544812472168960, 364974894538906616240640, 68409601066028072105113098240, 47312269462735023248040155132636160, 121317088003402776955124829814219234385920
Offset: 0
Keywords
Links
- Harry J. Smith, Table of n, a(n) for n = 0..59
Crossrefs
Programs
-
Magma
[Binomial(2^n +n-1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
Maple
with(combinat): for n from 0 to 20 do printf(`%d,`,binomial(2^n+n-1, n)) od:
-
Mathematica
Table[Binomial[2^n+n-1,n],{n,0,20}] (* Harvey P. Dale, Apr 19 2012 *)
-
PARI
a(n)=binomial(2^n+n-1,n)
-
PARI
{a(n)=polcoeff(sum(k=0,n,(-log(1-2^k*x +x*O(x^n)))^k/k!),n)} \\ Paul D. Hanna, Dec 29 2007
-
PARI
a(n) = sum(k=0, n, stirling(n,k,1)*(2^n+n-1)^k/n!); \\ Paul D. Hanna, Nov 20 2014
-
Python
from math import comb def A060690(n): return comb((1<
Chai Wah Wu, Jul 05 2024 -
Sage
[binomial(2^n +n-1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
Formula
a(n) = [x^n] 1/(1-x)^(2^n).
a(n) = (1/n!)*Sum_{k=0..n} ( (-1)^(n-k)*Stirling1(n, k)*2^(k*n) ). - Vladeta Jovovic, May 28 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2^n+n,k) - Vladeta Jovovic, Jan 21 2008
a(n) = Sum_{k=0..n} Stirling1(n,k)*(2^n+n-1)^k/n!. - Vladeta Jovovic, Jan 21 2008
G.f.: A(x) = Sum_{n>=0} [ -log(1 - 2^n*x)]^n / n!. More generally, Sum_{n>=0} [ -log(1 - q^n*x)]^n/n! = Sum_{n>=0} C(q^n+n-1,n)*x^n ; also Sum_{n>=0} log(1 + q^n*x)^n/n! = Sum_{n>=0} C(q^n,n)*x^n. - Paul D. Hanna, Dec 29 2007
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016
a(n) = A163767(2^n). - Alois P. Heinz, Jun 12 2024
Extensions
More terms from James Sellers, Apr 20 2001
Edited by N. J. A. Sloane, Mar 17 2008
Comments