cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A292578 Primes of the form 11*n^2 + 55*n + 43.

Original entry on oeis.org

43, 109, 197, 307, 439, 593, 769, 967, 1187, 1429, 1693, 1979, 2287, 2617, 2969, 3343, 3739, 4157, 4597, 5059, 6577, 7127, 7699, 8293, 9547, 10889, 11593, 14629, 15443, 17137, 18919, 19843, 20789, 21757, 24793, 25849, 26927, 28027, 30293, 32647, 33857, 35089
Offset: 1

Views

Author

Waldemar Puszkarz, Sep 19 2017

Keywords

Comments

The first 20 terms correspond to n from 0 to 19, which makes 11*n^2 + 55*n + 43 a prime-generating polynomial (see the link).
There are only a few prime-generating quadratic polynomials whose coefficients contain at most two digits that produce 20 or more primes in a row. This is one of them, others include A005846, A007641, A060844, and A007637.

Crossrefs

Cf. A000040, A005846, A007641, A060844, A007637 (similar sequences).

Programs

  • Maple
    select(isprime, [seq(11*n^2+55*n+43,n=0..100)]); # Robert Israel, Oct 01 2017
  • Mathematica
    Select[Range[0,100]//11#^2+55#+43 &, PrimeQ]
  • PARI
    for(n=0, 100, isprime(p=11*n^2+55*n+43)&& print1(p ", "))

A060834 a(n) = 6*n^2 + 6*n + 31.

Original entry on oeis.org

31, 43, 67, 103, 151, 211, 283, 367, 463, 571, 691, 823, 967, 1123, 1291, 1471, 1663, 1867, 2083, 2311, 2551, 2803, 3067, 3343, 3631, 3931, 4243, 4567, 4903, 5251, 5611, 5983, 6367, 6763, 7171, 7591, 8023, 8467, 8923, 9391, 9871, 10363, 10867, 11383
Offset: 0

Views

Author

Jason Earls, May 02 2001

Keywords

Comments

First 29 values are primes.
From Peter Bala, Apr 18 2018: (Start)
Let P(n) = 6*n^2 + 6*n + 31. The polynomial P(2*n-14) = 24*n^2 - 660*n + 4567 takes distinct prime values for n = 0 to 28.
The value of the polynomial 2*P(3/2*(n-10)) = 27*n^2 - 522*n + 2582 for n = 0 to 22 is either double a prime or a prime (alternately).
The value of the polynomial 4*P(4/3*(n-9)) = 32*n^2 - 552*n + 2469 for n = 0 to 28 is either prime or 3 times a prime, except when n = 16. (End)
Also, numbers k such that 2*k/3 - 2/3 - 19 is a perfect square. - Bruno Berselli, Apr 23 2018
Equivalently, numbers k such that 6*k - 177 is a square. - Vincenzo Librandi, Apr 23 2018

Examples

			a(29)=4903, prime. a(30)=5251, nonprime.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 145.
  • Donald D. Spencer, Computers in Number Theory, Computer Science Press, Rockville, MD, 1982, pp. 118-119.

Crossrefs

Programs

  • GAP
    List([0..80],n->6*n^2+6*n+31); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    Table[6n^2+6n+31,{n,0,60}] (* or *) LinearRecurrence[{3,-3,1},{31,43,67},60] (* Harvey P. Dale, Aug 09 2011 *)
  • PARI
    a(n) = { 6*n^2 + 6*n + 31 } \\ Harry J. Smith, Jul 19 2009
    

Formula

From R. J. Mathar, Feb 05 2008: (Start)
O.g.f.: -(31-50*x+31*x^2)/(-1+x)^3.
a(n) = A049598(n)+31. (End)
a(0)=31, a(1)=43, a(2)=67, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Aug 09 2011
E.g.f.: exp(x)*(31 + 12*x + 6*x^2). - Stefano Spezia, Dec 26 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001
Showing 1-2 of 2 results.