A060950 Rank of elliptic curve y^2 = x^3 + n.
0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 0, 0, 1, 1, 2, 0, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1
Offset: 1
Examples
a(1) = A060951(27) = a(729) = 0. - _Jonathan Sondow_, Sep 10 2013
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000 (from Gebel)
- J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
- H. Mishima, Tables of Elliptic Curves
- T. Womack, Minimal-known positive and negative k for Mordell curves of given rank
Crossrefs
Programs
-
PARI
a(n) = ellanalyticrank(ellinit([0, 0, 0, 0, n]))[1] \\ Jianing Song, Aug 24 2022
-
PARI
apply( {A060950(n)=ellrank(ellinit([0, n]))[1]}, [1..99]) \\ For PARI version < 2.14, use ellanalyticrank(...). - M. F. Hasler, Jul 01 2024
Formula
Extensions
Corrected by James R. Buddenhagen, Feb 18 2005
Comments