cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A060950 Rank of elliptic curve y^2 = x^3 + n.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 0, 0, 1, 1, 2, 0, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, May 10 2001

Keywords

Comments

The curves for n and -27*n are isogenous (as Noam Elkies points out--see Womack), so they have the same rank. - Jonathan Sondow, Sep 10 2013

Examples

			a(1) = A060951(27) = a(729) = 0. - _Jonathan Sondow_, Sep 10 2013
		

Crossrefs

Cf. A081119 (number of integral solutions to Mordell's equation y^2 = x^3 + n).

Programs

  • PARI
    a(n) = ellanalyticrank(ellinit([0, 0, 0, 0, n]))[1] \\ Jianing Song, Aug 24 2022
    
  • PARI
    apply( {A060950(n)=ellrank(ellinit([0, n]))[1]}, [1..99]) \\ For PARI version  < 2.14, use ellanalyticrank(...). - M. F. Hasler, Jul 01 2024

Formula

a(n) = A060951(27*n) and A060951(n) = a(27*n), so a(n) = a(729*n). - Jonathan Sondow, Sep 10 2013

Extensions

Corrected by James R. Buddenhagen, Feb 18 2005

A002155 Numbers k for which the rank of the elliptic curve y^2 = x^3 + k is 2.

Original entry on oeis.org

15, 17, 24, 37, 43, 57, 63, 65, 73, 79, 89, 101, 106, 122, 129, 131, 142, 145, 148, 151, 161, 164, 168, 171, 186, 195, 197, 198, 204, 217, 222, 223, 225, 229, 232, 233, 248, 252, 260, 265, 268, 269, 281, 294, 295, 297, 303, 322, 331, 337, 347, 350, 353, 360, 366, 369, 373, 377, 381, 388, 389, 392, 404, 409, 412, 414, 433, 449, 464, 469, 481, 483, 485, 492
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    for k in[1..500] do if Rank(EllipticCurve([0,0,0,0,k])) eq 2 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019

Extensions

More terms from James R. Buddenhagen, Feb 18 2005

A002151 Numbers k for which rank of the elliptic curve y^2 = x^3 + k is 0.

Original entry on oeis.org

1, 4, 6, 7, 13, 14, 16, 20, 21, 23, 25, 27, 29, 32, 34, 42, 45, 49, 51, 53, 59, 60, 64, 70, 75, 78, 81, 84, 85, 86, 87, 88, 90, 93, 95, 96, 104, 109, 114, 115, 116, 123, 124, 125, 135, 137, 140, 144, 153, 157, 158, 159, 160, 162, 165, 167, 173, 175, 176, 178
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    for k in[1..200] do if Rank(EllipticCurve([0,0,0,0,k])) eq 0 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019

Extensions

Corrected and extended by James R. Buddenhagen, Feb 18 2005
The missing entry 123 was added by T. D. Noe, Jul 24 2007

A060951 Rank of elliptic curve y^2 = x^3 - n.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 2, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2
Offset: 1

Views

Author

N. J. A. Sloane, May 10 2001

Keywords

Comments

The curves for n and -27*n are isogenous (as Noam Elkies points out--see Womack), so they have the same rank. - Jonathan Sondow, Sep 10 2013

Examples

			a(1) = A060950(27) = a(729) = 0. - _Jonathan Sondow_, Sep 10 2013
		

Crossrefs

Cf. A081120 (number of integral solutions to Mordell's equation y^2 = x^3 - n).

Programs

  • PARI
    {a(n) = if( n<1, 0, length( ellgenerators( ellinit( [ 0, 0, 0, 0, -n], 1))))} /* Michael Somos, Mar 17 2011 */
    
  • PARI
    apply( {A060951(n)=ellrank(ellinit([0,-n]))[1]}, [1..99]) \\ For version < 2.14, use ellanalyticrank(...). - M. F. Hasler, Jul 01 2024

Formula

a(n) = A060950(27*n) and A060950(n) = a(27*n), so a(n) = a(729*n). - Jonathan Sondow, Sep 10 2013

Extensions

Corrected Apr 08 2005 at the suggestion of James R. Buddenhagen. There were errors caused by the fact that Mishima lists each curve of rank two twice, once for each generator.

A002153 Numbers k for which the rank of the elliptic curve y^2 = x^3 + k is 1.

Original entry on oeis.org

2, 3, 5, 8, 9, 10, 11, 12, 18, 19, 22, 26, 28, 30, 31, 33, 35, 36, 38, 39, 40, 41, 44, 46, 47, 48, 50, 52, 54, 55, 56, 58, 61, 62, 66, 67, 68, 69, 71, 72, 74, 76, 77, 80, 82, 83, 91, 92, 94, 97, 98, 99, 100, 102, 103, 105, 107, 108, 110, 111, 112, 117, 118, 119
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    for k in[1..200] do if Rank(EllipticCurve([0,0,0,0,k])) eq 1 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019

Extensions

Corrected and extended by James R. Buddenhagen, Feb 18 2005

A060952 Rank of elliptic curve y^2 = x^3 - n*x.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 2, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 0, 1, 2, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, May 10 2001

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = ellanalyticrank(ellinit([0, 0, 0, -n, 0]))[1]} \\ Seiichi Manyama, Sep 16 2018

Extensions

Corrected Apr 08 2005 at the suggestion of James R. Buddenhagen. There were errors caused by the fact that Mishima lists each curve of rank two twice, once for each generator and each curve of rank three thrice.

A002159 Numbers k for which the rank of the elliptic curve y^2 = x^3 + k*x is 1.

Original entry on oeis.org

3, 5, 8, 9, 13, 15, 18, 19, 20, 21, 24, 28, 29, 31, 35, 37, 40, 47, 48, 49, 51, 53, 56, 60, 61, 67, 69, 77, 79, 80, 83, 84, 85, 88, 90, 92, 93, 95, 98, 100, 101, 104, 109, 111, 115, 120, 121, 124, 125, 126, 127, 128, 131, 133, 136, 141, 143, 144, 148, 149, 152, 153, 156
Offset: 1

Views

Author

Keywords

Comments

Terms 80 and 128 are missing in the article by Birch and Swinnerton-Dyer, page 25, table 4b. - Vaclav Kotesovec, Jul 07 2019

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    for k in[1..200] do if Rank(EllipticCurve([0,0,0,k,0])) eq 1 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019
  • PARI
    for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==1, print1(k", "))) \\ Seiichi Manyama, Jul 07 2019
    

Extensions

More terms added by Seiichi Manyama, Jul 07 2019

A102833 Numbers n for which rank of the elliptic curve y^2=x^3+n is 3.

Original entry on oeis.org

113, 141, 316, 346, 359, 427, 443, 506, 537, 568, 659, 681, 730, 745, 873, 892, 899, 940, 997, 1016, 1025, 1090, 1149, 1157, 1171, 1213, 1304, 1305, 1342, 1367, 1373, 1478, 1522, 1639, 1646, 1737, 1753, 1772, 1811, 1841, 1897, 1907, 1954, 2024, 2143
Offset: 1

Views

Author

James R. Buddenhagen, Feb 18 2005. Entry revised by N. J. A. Sloane, Jun 10 2012

Keywords

Crossrefs

Programs

  • Magma
    for k in[1..2000] do if Rank(EllipticCurve([0,0,0,0,k])) eq 3 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019

Extensions

More terms from T. D. Noe, Jul 24 2007

A002158 Numbers k for which the rank of the elliptic curve y^2 = x^3 + k*x is 0.

Original entry on oeis.org

1, 2, 4, 6, 7, 10, 11, 12, 16, 17, 22, 23, 25, 26, 27, 30, 32, 36, 38, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 62, 64, 70, 71, 72, 74, 75, 76, 78, 81, 82, 86, 87, 91, 96, 97, 102, 103, 106, 107, 108, 110, 112, 116, 117, 118, 119, 122, 123, 130, 132, 134, 135, 137, 139, 140, 142, 146, 147, 151, 160, 161, 162, 166, 167, 169, 170, 172, 174, 176, 177, 182, 186, 187, 190, 192, 193, 194, 199
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002159 (rank 1), A076329 (rank 2).
Cf. A060953.

Programs

  • Magma
    for k in[1..200] do if Rank(EllipticCurve([0,0,0,k,0])) eq 0 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019
    
  • PARI
    for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==0, print1(k", "))) \\ Seiichi Manyama, Jul 07 2019

Extensions

Corrected and extended by Vaclav Kotesovec, Jul 07 2019
New name by Vaclav Kotesovec, Jul 07 2019

A309028 Smallest k>0 such that the elliptic curve y^2 = x^3 + k*x has rank n, if k exists.

Original entry on oeis.org

1, 3, 14, 323, 1918, 195843
Offset: 0

Views

Author

Seiichi Manyama, Jul 08 2019

Keywords

Comments

See A309029 for the smallest negative k.

Crossrefs

Extensions

a(5) from Vaclav Kotesovec, Jul 14 2019
Showing 1-10 of 15 results. Next