cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A060953 Rank of elliptic curve y^2 = x^3 + n*x.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 2, 2, 1, 0, 1, 0, 2, 1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2, 0, 2, 2, 1, 2, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 0, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 0, 1, 2
Offset: 1

Views

Author

N. J. A. Sloane, May 10 2001

Keywords

Crossrefs

Programs

  • PARI
    { A060953(n) = ellanalyticrank( ellinit([0,0,0,n,0]) )[1]; }

Formula

a(-n) = A060952(n). - Michael Somos, Dec 15 2011

Extensions

Lambert Klasen (Lambert.Klasen(AT)gmx.net), Mar 31 2005, kindly rechecked this sequence against the Mishima web site and found no errors.
Corrected Apr 10 2005 at the suggestion of James R. Buddenhagen. There were errors caused by the fact that Mishima lists each curve of rank two twice, once for each generator.
Extended by Max Alekseyev, Mar 09 2009

A060950 Rank of elliptic curve y^2 = x^3 + n.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 0, 0, 1, 1, 2, 0, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, May 10 2001

Keywords

Comments

The curves for n and -27*n are isogenous (as Noam Elkies points out--see Womack), so they have the same rank. - Jonathan Sondow, Sep 10 2013

Examples

			a(1) = A060951(27) = a(729) = 0. - _Jonathan Sondow_, Sep 10 2013
		

Crossrefs

Cf. A081119 (number of integral solutions to Mordell's equation y^2 = x^3 + n).

Programs

  • PARI
    a(n) = ellanalyticrank(ellinit([0, 0, 0, 0, n]))[1] \\ Jianing Song, Aug 24 2022
    
  • PARI
    apply( {A060950(n)=ellrank(ellinit([0, n]))[1]}, [1..99]) \\ For PARI version  < 2.14, use ellanalyticrank(...). - M. F. Hasler, Jul 01 2024

Formula

a(n) = A060951(27*n) and A060951(n) = a(27*n), so a(n) = a(729*n). - Jonathan Sondow, Sep 10 2013

Extensions

Corrected by James R. Buddenhagen, Feb 18 2005

A002151 Numbers k for which rank of the elliptic curve y^2 = x^3 + k is 0.

Original entry on oeis.org

1, 4, 6, 7, 13, 14, 16, 20, 21, 23, 25, 27, 29, 32, 34, 42, 45, 49, 51, 53, 59, 60, 64, 70, 75, 78, 81, 84, 85, 86, 87, 88, 90, 93, 95, 96, 104, 109, 114, 115, 116, 123, 124, 125, 135, 137, 140, 144, 153, 157, 158, 159, 160, 162, 165, 167, 173, 175, 176, 178
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    for k in[1..200] do if Rank(EllipticCurve([0,0,0,0,k])) eq 0 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019

Extensions

Corrected and extended by James R. Buddenhagen, Feb 18 2005
The missing entry 123 was added by T. D. Noe, Jul 24 2007

A060951 Rank of elliptic curve y^2 = x^3 - n.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 2, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2
Offset: 1

Views

Author

N. J. A. Sloane, May 10 2001

Keywords

Comments

The curves for n and -27*n are isogenous (as Noam Elkies points out--see Womack), so they have the same rank. - Jonathan Sondow, Sep 10 2013

Examples

			a(1) = A060950(27) = a(729) = 0. - _Jonathan Sondow_, Sep 10 2013
		

Crossrefs

Cf. A081120 (number of integral solutions to Mordell's equation y^2 = x^3 - n).

Programs

  • PARI
    {a(n) = if( n<1, 0, length( ellgenerators( ellinit( [ 0, 0, 0, 0, -n], 1))))} /* Michael Somos, Mar 17 2011 */
    
  • PARI
    apply( {A060951(n)=ellrank(ellinit([0,-n]))[1]}, [1..99]) \\ For version < 2.14, use ellanalyticrank(...). - M. F. Hasler, Jul 01 2024

Formula

a(n) = A060950(27*n) and A060950(n) = a(27*n), so a(n) = a(729*n). - Jonathan Sondow, Sep 10 2013

Extensions

Corrected Apr 08 2005 at the suggestion of James R. Buddenhagen. There were errors caused by the fact that Mishima lists each curve of rank two twice, once for each generator.

A002156 Numbers k for which the rank of the elliptic curve y^2 = x^3 - k*x is 0.

Original entry on oeis.org

1, 3, 4, 8, 9, 11, 13, 16, 18, 19, 24, 27, 28, 29, 33, 35, 40, 43, 44, 48, 51, 59, 61, 63, 64, 67, 68, 75, 81, 83, 88, 91, 92, 93, 98, 100, 104, 107, 108, 109, 113, 115, 120, 121, 123, 125, 126, 128, 129, 131, 139, 144, 152, 153, 157, 163, 164, 168, 172, 173, 176, 177, 179, 180, 187, 189, 193, 195, 198, 200
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A060952.

Programs

  • Magma
    for k in[1..200] do if Rank(EllipticCurve([0,0,0,-k,0])) eq 0 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019
    
  • PARI
    for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, -k, 0]))[1]==0, print1(k", "))) \\ Seiichi Manyama, Jul 07 2019

Extensions

Corrected and extended by Vaclav Kotesovec, Jul 07 2019
New name by Vaclav Kotesovec, Jul 07 2019

A002157 Numbers k for which the rank of the elliptic curve y^2 = x^3 - k*x is 1.

Original entry on oeis.org

2, 5, 6, 7, 10, 12, 14, 15, 20, 21, 22, 23, 25, 26, 30, 31, 32, 34, 36, 37, 38, 39, 41, 42, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 60, 62, 66, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 84, 85, 86, 87, 89, 94, 95, 96, 99, 101, 102, 103, 105, 106, 110, 111, 112, 114, 116
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A060952.

Programs

  • Magma
    for k in[1..200] do if Rank(EllipticCurve([0,0,0,-k,0])) eq 1 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019
  • PARI
    for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, -k, 0]))[1]==1, print1(k", "))) \\ Seiichi Manyama, Jul 07 2019
    

Extensions

More terms added by Seiichi Manyama, Jul 07 2019

A309034 Numbers k for which rank of the elliptic curve y^2=x^3-k*x is 4.

Original entry on oeis.org

5037, 5795, 6497, 7585, 7672, 8701, 10001, 10081, 10605, 14547, 14637, 15805, 20091, 20737, 20760, 21177, 21571, 22321, 23137, 24492, 27812, 30877, 31595, 33026, 34241, 36737, 38412, 38497, 41021, 41907, 41922, 42347, 43036
Offset: 1

Views

Author

Seiichi Manyama, Jul 08 2019

Keywords

Crossrefs

Cf. A002156 (rank 0), A002157 (rank 1). A309032 (rank 2), A309033 (rank 3), this sequence (rank 4), A309100 (rank 5).

Programs

  • Magma
    for k in[1..10000] do if Rank(EllipticCurve([0,0,0,-k,0])) eq 4 then print k; end if; end for; // Vaclav Kotesovec, Jul 08 2019
  • PARI
    for(k=1, 1e4, if(ellanalyticrank(ellinit([0, 0, 0, -k, 0]))[1]==4, print1(k", ")))
    

Extensions

a(29)-a(33) from Seiichi Manyama, Jul 09 2019

A319510 Rank of elliptic curve y^2 = x^3 - n^2 * x.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 2, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Sep 24 2018

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = ellanalyticrank(ellinit([0, 0, 0, -n^2, 0]))[1]}

Formula

a(n) = A060952(n^2).
a(A003273(n)) > 0.
a(A194687(n)) = n.
Empirical: a(n) = a(4*n). - Jose Aranda, Jul 02 2024

A309029 Smallest k>0 such that the elliptic curve y^2 = x^3 - k*x has rank n, if k exists.

Original entry on oeis.org

1, 2, 17, 82, 5037, 49042
Offset: 0

Views

Author

Seiichi Manyama, Jul 08 2019

Keywords

Comments

See A309028 for the smallest positive k.

Crossrefs

Extensions

a(5) from Vaclav Kotesovec, Jul 09 2019

A385881 Algebraic rank of elliptic curve y^2 = x^3 - n*x - n.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 2, 2, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1
Offset: 1

Views

Author

Shreyansh Jaiswal, Aug 20 2025

Keywords

Comments

Terms from n = 43 onward are the analytic ranks (see PARI code) of the corresponding elliptic curves. By the BSD conjecture, these are expected to equal the algebraic ranks. Thus, the validity of these terms is conditional on BSD.

Examples

			a(1) = 0 because y^2 = x^3 - x - 1 has rank 0.
		

Crossrefs

Programs

  • PARI
    a(n) = ellanalyticrank( ellinit([0, 0, 0, -n, -n]) )[1]; \\ Michel Marcus, Aug 20 2025
  • SageMath
    for k in range(1, 43):
        E = EllipticCurve([-k, -k])
        print(E.rank(), end=", ")
    

Extensions

More terms from Michel Marcus, Aug 20 2025
Showing 1-10 of 10 results.