cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A008593 Multiples of 11.

Original entry on oeis.org

0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 220, 231, 242, 253, 264, 275, 286, 297, 308, 319, 330, 341, 352, 363, 374, 385, 396, 407, 418, 429, 440, 451, 462, 473, 484, 495, 506, 517, 528, 539, 550, 561, 572, 583
Offset: 0

Views

Author

Keywords

Comments

Numbers for which the sum of "digits" in base 100 is divisible by 11. For instance, 193517302 gives 1 + 93 + 51 + 73 + 02 = 220, and 2 + 20 = 22 = 2 * 11. - Daniel Forgues, Feb 22 2016
Numbers in which the sum of the digits in the even positions equals the sum of the digits in the odd positions. - Stefano Spezia, Jan 05 2025

Crossrefs

Programs

Formula

a(n) = 11*n.
G.f.: 11*x/(1-x)^2. - David Wilding, Jun 21 2014
E.g.f.: 11*x*exp(x). - Stefano Spezia, Oct 08 2022
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = 2*a(n-1) - a(n-2).
a(n) = A008604(n)/2. (End)

A135499 Numbers for which Sum_digits(odd positions) = Sum_digits(even positions).

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 165, 176, 187, 198, 220, 231, 242, 253, 264, 275, 286, 297, 330, 341, 352, 363, 374, 385, 396, 440, 451, 462, 473, 484, 495, 550, 561, 572, 583, 594, 660, 671, 682, 693, 770, 781, 792, 880, 891, 990
Offset: 1

Views

Author

Keywords

Comments

Conjecture: this is a subsequence of A008593 (verified for the first 50 thousand terms). - R. J. Mathar, Feb 10 2008
Subsequence of A008593. - Zak Seidov Feb 11 2008
If k is present, so is 10*k. - Robert G. Wilson v, Jul 13 2014
As Seidov said, a subsequence of multiples of 11. That follows trivially from the divisibility rule for 11. - Jens Kruse Andersen, Jul 13 2014
A225693(a(n)) = 0. - Reinhard Zumkeller, Aug 08 2014

Examples

			594, 1023, and 1397 are terms:
   594 -> 4 + 5 = 9;
  1023 -> 3 + 0 = 2 + 1;
  1397 -> 7 + 3 = 9 + 1.
		

Crossrefs

Cf. A060979.
Cf. A225693.

Programs

  • Haskell
    a135499 n = a135499_list !! (n-1)
    a135499_list = filter ((== 0) . a225693) [1..]
    -- Reinhard Zumkeller, Aug 08 2014, Jul 05 2014
  • Maple
    P:=proc(n) local i,k,w,x; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; x:=0; k:=i; while k>0 do x:=x+(k-(trunc(k/10)*10)); k:=trunc(k/100); od; if w=2*x then print(i); fi; od; end: P(3000);
    # Alternative:
    filter:= proc(n)
    local L,d;
    L:= convert(n,base,10);
    d:= nops(L);
    add(L[2*i],i=1..floor(d/2)) = add(L[2*i-1],i=1..floor((d+1)/2))
    end proc:
    select(filter,[ 11*j $ j= 1 .. 10^4 ]); # Robert Israel, May 28 2014
  • Mathematica
    dQ[n_]:=Module[{p=Transpose[Partition[IntegerDigits[n],2,2,1,0]]},Total[First[p]]== Total[Last[p]]]; Select[Range[1000],dQ] (* Harvey P. Dale, May 26 2011 *)
Showing 1-2 of 2 results.