cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A214004 Values of n where A061010(n) = A114485(n) + 1.

Original entry on oeis.org

7, 8, 10, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 28, 29, 36, 40, 41, 42, 45, 46, 49, 51, 53, 54, 61, 62, 65, 67, 69, 72, 75, 79, 81, 82, 84, 90, 94, 97, 100, 101, 106, 107, 111, 113, 114, 116, 117, 118, 122, 123, 126, 127, 131, 133, 134, 136, 137, 139, 142, 144, 145, 147, 152, 155, 157, 158, 160, 161, 162, 163, 165, 167, 169, 170, 172, 176, 181, 182, 183, 185, 189, 191, 192, 194
Offset: 1

Views

Author

Carl R. White, Jun 30 2012

Keywords

Comments

Compares numbers of digits between !(10^n) and (10^n)!. At all other positions, A061010 and A114485 are equal.

Crossrefs

A058814 Numbers k such that k divides the number of digits of k!.

Original entry on oeis.org

1, 22, 23, 24, 266, 267, 268, 2712, 2713, 27175, 27176, 271819, 271820, 271821, 2718272, 2718273, 27182807, 27182808, 271828170, 271828171, 271828172
Offset: 1

Views

Author

Robert G. Wilson v, Jan 03 2001

Keywords

Comments

For k = 1, 22, 23 and 24 only, the number of digits in k! is equal to k. - Bernard Schott, Feb 02 2013
I employed R. Wm. Gosper's approximation (A090583). - Robert G. Wilson v, Feb 04 2013
For large m, 10^m*C -> 10^m*e, where e is Euler's or Napier's constant (A001113). Conjecture: There exist at least two contiguous terms for each k > 0, sometimes three contiguous terms, but never four. - Robert G. Wilson v, Feb 04 2013

Examples

			23! = 25852016738884976640000 has 23 digits.
		

References

  • Gardner, M. "Factorial Oddities." Ch. 4 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, pp. 50-65, 1978
  • D. Wells, Curious and Interesting Numbers, Penguin Books, 1997, page 78.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Mod[ Floor[(n*Log[n] - n + Log[(2 n + 1/3) Pi]/2)/Log[10] + 1], n] == 0; k = 1; s = {}; While[k < 1000001, If[ fQ@ k, AppendTo[s, k]; Print[k]]; k++]; s (* Robert G. Wilson v, Feb 04 2013 *)
  • PARI
    A034886(n)= /* Number of digits in n! */;
    { if(n==0, 1, 1 + floor((-n + (2*n+1)*log(n)/2 + 1/2*log(2*Pi))/log(10)) + (n==1)); }
    goA058814(maxsearch)= /* write b-File for A058814 */
    { my(k=0); for(n=1, maxsearch, if(A034886(n)%n==0, k++; print(k" "n);write("b058814.txt",k" "n);));}
    /* Enrique Pérez Herrero, Jun 05 2011 */

A114485 Number of decimal digits in !(10^n), where !x is the subfactorial.

Original entry on oeis.org

7, 158, 2568, 35660, 456574, 5565709, 65657059, 756570556, 8565705523, 95657055186, 1056570551816, 11565705518103, 125657055180974, 1356570551809682, 14565705518096756, 155657055180967490
Offset: 1

Views

Author

Eric W. Weisstein, Nov 30 2005

Keywords

Comments

Entries where the number of digits of the subfactorial (here) is one less than the number of digits of the factorial (A061010) are indicated by A214004. [Carl R. White, Jun 30 2012]

Crossrefs

Formula

a(n) = 10^n*(n - 1/log(10)) + n/2 + O(1). [Arkadiusz Wesolowski, Jan 20 2012]

Extensions

More terms from Carl R. White, Jun 30 2012

A119906 Largest number whose factorial is less than 10^(10^n).

Original entry on oeis.org

3, 13, 69, 449, 3248, 25205, 205022, 1723507, 14842906, 130202808, 1158787577, 10433891463, 94851898540, 869200494599, 8019346203785, 74419210652835, 694100859679691, 6502464891216879, 61154108320430275, 577134533044522749, 5463531774867094396
Offset: 0

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Aug 01 2006

Keywords

Examples

			a(1) = 13 because 10^(10^1) = 10^10 = 10000000000 and 13! = 6227020800 is largest factorial less than this.
		

Crossrefs

Programs

  • Maple
    A119906Stirling := proc(n) local i; fsolve( (i+0.5)*log(i+1.0)=log(10.0)*10.0^n+i-1.0-0.5*log(2.0*Pi)-1./12.0/i,i) ; end : A119906 := proc(n::integer) local aestim::integer,resul::integer,faci1::integer,faci::integer,pow10::integer,i ; pow10 := 10^(10^n) ; aestim := floor(A119906Stirling(n))-1 ; faci1 := factorial(aestim) ; for i from aestim+1 to aestim+9 do faci := factorial(i) ; if faci1< pow10 and faci >= pow10 then RETURN(i-1) ; fi ; faci1 := faci ; end ; RETURN(0) ; end: for n from 0 to 30 do printf("%d,",A119906(n)) ; od ; # R. J. Mathar, Aug 04 2006
  • Mathematica
    With[{s = Array[Factorial, 30000]}, Table[LengthWhile[s, # < 10^(10^n) &], {n, 0, 5}] ] (* Michael De Vlieger, May 14 2018 *)

Extensions

a(6) from R. J. Mathar, Aug 04 2006
a(7)-a(19) from Jon E. Schoenfield, Aug 09 2006
a(20) from Daniel Suteu, May 14 2018

A244061 The number of digits of (2^n)!.

Original entry on oeis.org

1, 1, 2, 5, 14, 36, 90, 216, 507, 1167, 2640, 5895, 13020, 28504, 61937, 133734, 287194, 613842, 1306594, 2771010, 5857670, 12346641, 25955890, 54436999, 113924438, 237949763, 496101303, 1032606162, 2146019444, 4453653132, 9230534755
Offset: 0

Views

Author

Robert G. Wilson v, Jun 18 2014

Keywords

Crossrefs

Programs

  • Mathematica
    LogBase10Stirling[n_] := Floor[ Log[10, 2 Pi n]/2 + n*Log[10, n/E] + Log[10, 1 + 1/(12 n) + 1/(288 n^2) - 139/(51840 n^3) - 571/(2488320 n^4) + 163879/(209018880 n^5)]]; Table[ LogBase10Stirling[2^n] + 1, {n, 0, 30}]
    IntegerLength[(2^Range[0,30])!] (* Harvey P. Dale, Nov 05 2021 *)

A261175 Number of digits of Hyperfactorial(n).

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 13, 19, 26, 35, 45, 56, 69, 84, 100, 117, 137, 158, 180, 204, 231, 258, 288, 319, 352, 387, 424, 463, 503, 546, 590, 636, 684, 734, 786, 840, 897, 955, 1015, 1077, 1141, 1207, 1275, 1345, 1418, 1492, 1568, 1647, 1728, 1811, 1896, 1983, 2072, 2163, 2257, 2352
Offset: 0

Views

Author

Robert G. Wilson v, Aug 20 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1 + Floor@ Log10@ Hyperfactorial@ n, {n, 0, 55}]
  • PARI
    a(n)=my(r=1);for(i=1,n+1,r *= i^i);floor(log(r)/log(10))+1 \\ Anders Hellström, Aug 20 2015
    
  • PARI
    vector(60, n, n--; #Str(prod(k=2, n, k^k))) \\ Michel Marcus, Aug 20 2015
    
  • Python
    A261175_list, n = [], 1
    for i in range(100):
        n *= i**i
        A261175_list.append(len(str(n)))  # Chai Wah Wu, Aug 21 2015

Formula

a(n) = 1 + floor( log_10( A002109(n))) = A055642(A002109(n)).

A375348 a(n) is the mode of the digits of n! not counting trailing zeros (using -1 if multimodal).

Original entry on oeis.org

1, 1, 2, 6, -1, -1, -1, -1, -1, 8, 8, 9, 0, 2, -1, -1, 8, -1, 7, -1, -1, -1, 7, 8, 3, 1, 6, 8, -1, -1, 8, 2, 3, 8, 9, -1, 9, -1, 0, 8, 1, -1, -1, 3, 8, 6, -1, 1, 7, 2, 6, -1, 8, 3, -1, 5, 4, 2, -1, 8, 4, 0, 2, 6, -1, 2, 4, 6, 1, 2, 8, 8, 8, 0, 2, 4, -1, 8, 2, 1, 5, 7, 4, -1, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Inspired by A356758.
If we were to count trailing zeros, then would have a(n) = 0 for all n >= 34. Therefore we only consider the decimal digits of A004154(n).
Conjecture: excluding -1, as n -> oo, all digits occur equally often.

Examples

			a(0) = a(1) = 1 because 0! = 1! = 1 and 1 is the only digit present;
a(4) = -1 since 4! = 24 and there are only two digits appearing with the same frequency, 2 and 4.
a(14) = -1 because 14! = 87178291200 and, not counting the two trailing 0's, there are two 1's, two 2's, two 7's, and two 8's.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[Length[c=Commonest[IntegerDigits[n! / 10^IntegerExponent[n!]]]] > 1, -1, c[[1]]]; Array[a, 86, 0]
  • Python
    from collections import Counter
    from sympy import factorial
    def A375348(n): return -1 if len(k:=Counter(str(factorial(n)).rstrip('0')).most_common(2)) > 1 and k[0][1]==k[1][1] else int(k[0][0]) # Chai Wah Wu, Sep 15 2024

A375575 a(n) is the least frequent digit of n! not counting trailing zeros, or -1 if there is more than one least frequent digit.

Original entry on oeis.org

1, 1, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, -1, 7, 0, 4, -1, -1, -1, -1, -1, -1, 8, -1, -1, -1, 8, -1, -1, 9, -1, -1, 0, 9, 9, -1, -1, -1, 1, -1, -1, 2, -1, -1, 5, 5, 1, 4, 5, 7, -1, 5, -1, 6, 6, 0, -1, 5, 9, 6, -1, 0, 5, 9
Offset: 0

Views

Author

Keywords

Comments

Analogous to A375348.
If we were to count trailing zeros, then a(n) would never equal zero, for all n's >= 0. Therefore we only consider the decimal digits of A004154.
Conjecture: excluding -1, as n -> oo, the digits distribution is uniform as in A375348.

Examples

			a(0) = a(1) = 1 because 0! = 1! = 1 and 1 is the only digit present;
a(4) = -1 since 4! = 24 and there are two least frequent digits, 2 and 4.
a(14) = 9 because 14! = 87178291200 and, not counting the two trailing 0's, there are two 1's, two 2's, two 7's, two 8's but only one 9.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,j;
      L:= convert(n!,base,10);
      for j from 1 while L[j] = 0 do od:
      L:= Statistics:-Tally(L[j...-1]);
      L:= sort(L,(a,b) -> rhs(a) < rhs(b));
      if nops(L) >= 2 and rhs(L[2]) = rhs(L[1]) then -1 else lhs(L[1]) fi
    end proc:
    map(f, [$0..100]); # Robert Israel, Sep 02 2024
  • Mathematica
    Rarest[lst_] := MinimalBy[ Tally[lst], Last][[All, 1]]; a[n_] := If[ Length[c = Rarest[ IntegerDigits[n!/10^IntegerExponent[n!, 10]] ]] >1, -1, c[[1]]]; Array[a, 80, 0]
  • Python
    from collections import Counter
    from sympy import factorial
    def A375575(n): return -1 if len(k:=Counter(str(factorial(n)).rstrip('0')).most_common()) > 1 and k[-1][1]==k[-2][1] else int(k[-1][0]) # Chai Wah Wu, Sep 15 2024
Showing 1-8 of 8 results.