cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A229992 Numbers for which A061214(n) + 1 is prime, where A061214(n) = product of composite numbers between prime(n) and prime(n+1) .

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 12, 13, 14, 16, 17, 20, 21, 25, 26, 28, 29, 31, 33, 35, 39, 41, 43, 44, 45, 49, 51, 52, 57, 60, 64, 67, 69, 70, 81, 83, 85, 89, 90, 91, 97, 98, 104, 109, 113, 116, 118, 120, 131, 134, 136, 140, 142, 144, 145, 148, 152, 157, 171, 173
Offset: 2

Views

Author

Clark Kimberling, Oct 09 2013

Keywords

Examples

			a(2) = 2 because 4 + 1 is prime; a(3) = 3 because 6 + 1 is prime; 4 is not in A229992 because 8*9*10 + 1 is not prime.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Product[k, {k, Prime[n] + 1, Prime[n + 1] - 1}]; c[n_] := If[PrimeQ[q[n] + 1], 1, 0]; t = Table[c[n], {n, 1, 230}]; u = Rest[Flatten[Position[t, 1]]]

A229991 Numbers for which A061214(n) - 1 is prime, where A061214(n) = product of composite numbers between prime(n) and prime(n+1) .

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 19, 20, 22, 26, 28, 29, 33, 34, 35, 41, 43, 45, 49, 52, 55, 56, 57, 60, 61, 64, 69, 72, 75, 81, 83, 85, 86, 89, 90, 91, 93, 94, 98, 104, 105, 109, 113, 116, 120, 122, 123, 124, 129, 134, 138, 139, 140, 142, 143
Offset: 2

Views

Author

Clark Kimberling, Oct 09 2013

Keywords

Examples

			a(2) = 2 because 4 - 1 is prime; a(4) = 4 because 8*9*10-1 is prime; 12 is not in A229991 because 38*39*40 - 1 is not prime.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Product[k, {k, Prime[n] + 1, Prime[n + 1] - 1}]; c[n_] := If[PrimeQ[q[n] - 1], 1, 0]; t = Table[c[n], {n, 1, 230}]; u = Flatten[Position[t, 1]]
    Select[Range[150],PrimeQ[Times@@Range[Prime[#]+1,Prime[#+1]-1]-1]&] (* Harvey P. Dale, Feb 15 2014 *)

A229993 Numbers for which c(n) - 1 and c(n) + 1 are twin primes, where c(n) = A061214(n) = product of composite numbers between prime(n) and prime(n+1) .

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 13, 14, 17, 20, 26, 28, 29, 33, 35, 41, 43, 45, 49, 52, 57, 60, 64, 69, 81, 83, 85, 89, 90, 91, 98, 104, 109, 113, 116, 120, 134, 140, 142, 144, 148, 152, 171, 173, 176, 178, 182, 190, 201, 202, 204, 206, 209, 212, 215, 225, 230, 234
Offset: 2

Views

Author

Clark Kimberling, Oct 09 2013

Keywords

Examples

			c(n) - 1:  3, 5, 719, 11, 3359, 17, 9239.
c(n) + 1: 5, 7, 721, 13, 3361, 19, 9241.  Here, for example, for we have twin primes except for n = 4, since 721 is not prime.
		

Crossrefs

Programs

  • Mathematica
    z = 400; c[n_] := Product[k, {k, Prime[n] + 1, Prime[n + 1] - 1}]; d[n_] := If[PrimeQ[c[n] - 1], 1, 0]; t1 = Table[d[n], {n, 1, z}]; u1 = Flatten[Position[t1, 1]]; e[n_] := If[PrimeQ[c[n] + 1], 1, 0]; t2 = Table[e[n], {n, 1, z}]; u2 = Flatten[Position[t2, 1]]; u = Intersection[u1, u2]
    pcnQ[n_]:=Module[{p=Times@@Range[Prime[n]+1,Prime[n+1]-1]},AllTrue[p+{1,-1},PrimeQ]]; Select[Range[250],pcnQ] (* Harvey P. Dale, Jan 28 2023 *)

A219611 a(n) is the smallest omega(A061214(k)) sampled over all indices k of prime gaps prime(k+1) - prime(k) = 2n, where omega = A001221.

Original entry on oeis.org

1, 3, 5, 9, 11, 14, 14, 21
Offset: 1

Views

Author

Naohiro Nomoto, Apr 12 2013

Keywords

Comments

The example demonstrates that the minimum order of the set of primes represented by all composites in the prime gap 2*n is not necessarily obtained by using the smallest prime(k) (that would be A038664).

Examples

			For n=8: p_283-p_282 = p_296-p_295 = 2*8=16; omega(A061214(282)) > omega(A061214(295)); omega(A061214(295)) = 21; so a(8) = 21.
		

Crossrefs

Cf. A052297.

A052248 Greatest prime divisor of all composite numbers between p and next prime.

Original entry on oeis.org

2, 3, 5, 3, 7, 3, 11, 13, 5, 17, 19, 7, 23, 17, 29, 5, 31, 23, 3, 37, 41, 43, 47, 11, 17, 53, 3, 37, 61, 43, 67, 23, 73, 5, 31, 79, 83, 43, 89, 5, 61, 3, 97, 11, 103, 109, 113, 19, 29, 79, 5, 83, 127, 131, 89, 5, 137, 139, 47, 97, 151, 103, 13, 157, 163, 167, 173, 29, 13
Offset: 2

Views

Author

Keywords

Comments

Or, largest of all prime factors of the numbers between prime(n) and prime(n+1).
a(n) = 3, 5, 7, 11, 13 iff prime(n) is in A059960, A080185, A080186, A080187, A080188 respectively. This sequence defines a mapping f of primes > 2 to primes (cf. A080189) and f(p) < p holds for all p > 2. - Klaus Brockhaus, Feb 10 2003
a(n) = A006530(A061214(n)). - Reinhard Zumkeller, Jun 22 2011

Examples

			a(8) = 11 since 20 = 2*2*5, 21 = 3*7, 22 = 2*11 are the numbers between prime(8) = 19 and prime(9) = 23.
For n=9, n-th prime is 23, composites between 23 and next prime are 24 25 26 27 29 of which largest prime divisor is 13, so a(9)=13.
		

Crossrefs

Programs

  • Haskell
    a052248 n = a052248_list !! (n-2)
    a052248_list = f a065091_list where
       f (p:ps'@(p':ps)) = (maximum $ map a006530 [p+1..p'-1]) : f ps'
    -- Reinhard Zumkeller, Jun 22 2011
  • Mathematica
    g[n_] := Block[{t = Range[Prime[n] + 1, Prime[n + 1] - 1]}, Max[First /@ Flatten[ FactorInteger@t, 1]]]; Table[ g[n], {n, 2, 72}] (* Robert G. Wilson v, Feb 08 2006 *)
    cmp[{a_,b_}]:=Max[Flatten[FactorInteger/@Range[a+1,b-1],1][[All,1]]]; cmp/@ Partition[ Prime[Range[2,80]],2,1] (* Harvey P. Dale, May 16 2020 *)
  • PARI
    forprime(p=3,360,q=nextprime(p+1); m=0; for(j=p+1,q-1,f=factor(j); a=f[matsize(f)[1],1]; if(m
    				

Formula

a(n) = max(prime(n) < k < prime(n+1), A006530(k)).

A052297 Number of distinct prime factors of all composite numbers between n-th and (n+1)st primes.

Original entry on oeis.org

0, 1, 2, 3, 2, 4, 2, 5, 5, 3, 6, 5, 3, 5, 6, 7, 3, 7, 6, 2, 8, 4, 8, 9, 5, 3, 6, 2, 6, 14, 5, 8, 3, 11, 3, 9, 7, 6, 8, 8, 3, 13, 2, 6, 3, 14, 15, 5, 3, 7, 9, 3, 11, 8, 9, 9, 3, 9, 6, 3, 13, 16, 7, 3, 6, 16, 8, 13, 3, 6, 9, 10, 9, 9, 6, 8, 11, 6, 12, 14, 4, 14, 2, 10, 7, 8, 11, 6, 4, 6, 16, 10, 6, 13
Offset: 1

Views

Author

Labos Elemer, Feb 09 2000

Keywords

Comments

From Lei Zhou, Mar 18 2014: (Start)
This is also the number of primes such that the (n+1)-th prime (mod i-th prime) is smaller than the (n+1)-th prime (mod n-th prime) for 1 <= i < n.
Proof: We denote the n-th prime number as P_n. Suppose P_(n+1) mod P_i = k; we can write P_(n+1) = m*P_i + k. Setting l = P_(n+1) - P_n, the composite numbers between P_n and P_(n+1) will be consecutively m*P_i + C, where C = k-l+1, k-l+2, ..., k-1. If k < l, there must be a value at which C equals zero since k-1 > 0 and k-l+1 <= 0, so P_i is a factor of a composite number between P_n and P_(n+1). If k >= l, all C values are greater than zero, thus P_i cannot be a factor of a composite number between P_n and P_(n+1). (End)

Examples

			n=30, p(30)=113, the next prime is 127. Between them are 13 composites: {114, 115, ..., 126}. Factorizing all and collecting prime factors, the set {2,3,5,7,11,13,17,19,23,29,31,41,59,61} is obtained, consisting of 14 primes, so a(30)=14.
		

Crossrefs

Programs

  • Mathematica
    Length[Union[Flatten[Table[Transpose[FactorInteger[n]][[1]],{n, First[#]+ 1, Last[#]-1}]]]]&/@Partition[Prime[Range[100]],2,1] (* Harvey P. Dale, Jan 19 2012 *)

A076978 Product of the distinct primes dividing the product of composite numbers between consecutive primes.

Original entry on oeis.org

1, 2, 6, 30, 6, 210, 6, 2310, 2730, 30, 39270, 7410, 42, 7590, 46410, 1272810, 30, 930930, 82110, 6, 21111090, 1230, 48969690, 1738215570, 2310, 102, 144690, 6, 85470, 29594505363092670, 16770, 49990710, 138, 7849357706190, 30, 300690390, 20223210, 1122990, 37916970
Offset: 1

Views

Author

Amarnath Murthy, Oct 23 2002

Keywords

Comments

Equivalently, the largest squarefree number that divides the product of composite numbers between successive primes.
From Robert G. Wilson v, Dec 02 2020: (Start)
All terms greater than one are even.
Omega(a(n)): 0, 1, 2, 3, 2, 4, 2, 5, 5, 3, 6, 5, 3, 5, 6, 7, 3, 7, 6, 2, 8, 4, 8, 9, 5, ..., .
Records: 1, 2, 6, 30, 210, 2310, 2730, 39270, 46410, 1272810, 21111090, ..., (2*A354218).
Factored: 1, 2, 2*3, 2*3*5, 2*3*5*7, 2*3*5*7*11, 2*3*5*7*13, 2*3*5*7*11*17, 2*3*5*7*13*17, 2*3*5*7*11*19*29, ..., .
(End)

Examples

			a(4) = product of prime divisors of the product of composite numbers between 7 and 11 = 2 * 3 * 5 = 30.
a(5)=6 because 12 is the only composite number between the 5th and the 6th primes (11 and 13) and largest squarefree divisor of 12 is 6.
		

Crossrefs

Programs

  • Maple
    with(numtheory): b:=proc(j) if issqrfree(j) then j else fi end: a:=proc(n) local B,BB: B:=divisors(product(i,i=ithprime(n)+1..ithprime(n+1)-1)): BB:=(seq(b(B[j]),j=1..nops(B))): max(BB); end: seq(a(n),n=1..33); # Emeric Deutsch, Jul 28 2006
  • Mathematica
    f[n_] := Times @@ (First@# & /@ FactorInteger[Times @@ Range[Prime[n] + 1, Prime[n + 1] - 1]]);  Array[f, 50] (* Robert G. Wilson v, Dec 02 2020 *)
  • PARI
    a(n) = my(p=1); forcomposite(c=prime(n), prime(n+1), p*=c); factorback(factorint(p)[, 1]); \\ Michel Marcus, May 29 2022
    
  • Python
    from sympy import sieve as p, primefactors
    def A076978(n):
        result = 1
        for composites in range(p[n]+1, p[n+1]):
            for primefactor in primefactors(composites):
                if result % primefactor != 0: result *= primefactor
        return result # Karl-Heinz Hofmann, May 30 2022

Formula

From Michel Marcus, May 29 2022: (Start)
a(n) = A007947(A074167(n)).
a(n) = A007947(A061214(n)). (End)

Extensions

More terms from Emeric Deutsch, Jul 28 2006
More terms from Robert G. Wilson v, Dec 02 2020
Entry revised by N. J. A. Sloane, Dec 02 2020

A092435 Prime factorials divided by their corresponding primorials.

Original entry on oeis.org

1, 1, 4, 24, 17280, 207360, 696729600, 12541132800, 115880067072000, 1366643159020339200000, 40999294770610176000000, 1854768736099424576471040000000, 109950690675973888893203251200000000, 4617929008390903333514536550400000000, 420600974084243475616503989010432000000000
Offset: 1

Views

Author

Don Willard (dwillard(AT)prairie.cc.il.us), Mar 23 2004

Keywords

Examples

			E.g., 2 factorial divided by 2 primorial is 1; 3 factorial is 6, divided by 3 primorial (3*2=6) is also 1; 5 factorial is 120, divided by 5 primorial (5*3*2=30) is 4 and so forth.
		

Crossrefs

Subsequence of A036691. - Chayim Lowen, Jul 23 2015

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          a(n-1)*mul(i, i=ithprime(n-1)+1..ithprime(n)-1))
        end:
    seq(a(n), n=1..15);  # Alois P. Heinz, Jan 15 2025
  • Mathematica
    Table[ Prime[n]! / Times @@ Prime[ Range[ n]], {n, 13}] (* Robert G. Wilson v, Mar 25 2004 *)
  • PARI
    a(n)=prime(n)!/prod(i=1,n,prime(i)) \\ Ralf Stephan, Dec 21 2013

Formula

p!/p# = A039716/A002110.
Partial products of A061214. - Lekraj Beedassy, Nov 06 2006
From Chayim Lowen, Jul 23 - Aug 05 2015: (Start)
a(n) = A036691(A065890(n)).
a(n) = Product_{k=1..n} prime(k)^(A085604(prime(n),k)-1).
a(n) = A049614(prime(n)).
a(n) = Product_{k=1..prime(n)} k^A066247(k). (End)

Extensions

Edited by Robert G. Wilson v, Mar 25 2004
More terms from Michel Marcus, Jan 15 2025

A072472 a(n) = product of numbers from prime(n)+1 up to prime(n+1), where prime(n) is the n-th prime.

Original entry on oeis.org

3, 20, 42, 7920, 156, 57120, 342, 212520, 342014400, 930, 1673844480, 2430480, 1806, 4280760, 16529385600, 32441381280, 3660, 71852901120, 23319240, 5256, 200133133200, 44102880, 418397031360, 5827054819622400, 97990200, 10506, 123854640, 11772, 154529760
Offset: 1

Views

Author

Amarnath Murthy, Jun 20 2002

Keywords

Comments

Originally the offset was -1 and two terms more in front were pre defined in a inscrutable manner (a(-1)=1, a(0) = 2; .....). - Karl-Heinz Hofmann, Apr 18 2023

Examples

			a(1) = 3
a(2) = 4 * 5 = 20
a(3) = 6 * 7 = 42
a(4) = 8 * 9 * 10 * 11 = 7920
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Product[k, {k, Prime[n] + 1, Prime[n + 1]}]; Table[a[n], {n, 1, 30}]
  • PARI
    a(n) = prod(k=prime(n)+1, prime(n+1), k); \\ Michel Marcus, Apr 17 2023
  • Python
    from sympy import prod, sieve as prime
    def A072472(n):
        return prod(range(prime[n]+1, prime[n+1]+1)) # Karl-Heinz Hofmann, Apr 17 2023
    

Formula

a(n) = A000040(n+1)*A061214(n). - Karl-Heinz Hofmann, Apr 18 2023

Extensions

Edited by Robert G. Wilson v, Jun 21 2002
Offset, data and name corrected by Karl-Heinz Hofmann, Apr 18 2023

A361760 a(n) = Product_{i=prime(n)..prime(n+1)-1} i.

Original entry on oeis.org

2, 12, 30, 5040, 132, 43680, 306, 175560, 271252800, 870, 1402410240, 2193360, 1722, 3916440, 14658134400, 29142257760, 3540, 65418312960, 22005480, 5112, 184933148400, 41977440, 390190489920, 5346472978828800, 94109400, 10302, 119224560, 11556, 149059680, 120140035685601494718355200000, 272613120
Offset: 1

Views

Author

Karl-Heinz Hofmann, Mar 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(x=1); for(i=prime(n), prime(n+1)-1, x*=i); x; \\ Michel Marcus, Mar 28 2023
  • Python
    from sympy import prod, sieve
    def A361760(n): return prod(range(sieve[n], sieve[n+1]))
    

Formula

a(n) = A000040(n)*A061214(n).
Showing 1-10 of 18 results. Next